Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Physiol Mol Plant Pathol ; 72(1-3): 46-55, 2008 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21796232

RESUMEN

AvrRxv is a member of a family of pathogen effectors present in pathogens of both plant and mammalian species. Xanthomonas campestris pv. vesicatoria strains carrying AvrRxv induce a hypersensitive response (HR) in the tomato cultivar Hawaii 7998. Using a yeast two-hybrid screen, we identified a 14-3-3 protein from tomato that interacts with AvrRxv called AvrRxv Interactor 1 (ARI1). The interaction was confirmed in vitro with affinity chromatography. Using mutagenesis, we identified a 14-3-3-binding domain in AvrRxv and demonstrated that a mutant in that domain showed concomitant loss of interaction with ARI1 and HR-inducing activity in tomato. These results demonstrate that the AvrRxv bacterial effector recruits 14-3-3 proteins for its function within host cells. AvrRxv homologues YopP and YopJ from Yersinia do not have AvrRxv-specific HR-inducing activity when delivered into tomato host cells by Agrobacterium. Although YopP itself cannot induce HR, its C-terminal domain containing the catalytic residues can replace that of AvrRxv in an AvrRxv-YopP chimera for HR-inducing activity. Phylogenetic analysis indicates that the sequences encoding the C-termini of family members are evolving independently from those encoding the N-termini. Our results support a model in which there are three functional domains in proteins of the family, translocation, interaction, and catalytic.

2.
Dev Dyn ; 229(3): 591-9, 2004 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-14991714

RESUMEN

The timing of myogenic differentiation of hypaxial muscle precursor cells in the somite lags behind that of epaxial precursors. Two hypotheses have been proposed to explain this delay. One attributes the delay to the presence of negative-acting signals from the lateral plate mesoderm adjacent to the hypaxial muscle precursor cells located in the ventrolateral lip of the somitic dermomyotome (Pourquié et al. [1995] Proc. Natl. Acad. Sci. USA 92:3219-3223). The second attributes the delay to an absence of positive-acting inductive signals, similar to those from the axial structures that induce epaxial myotome development (Pownall et al. [1996] Development 122:1475-1488). Because both studies relied principally upon changes in the expression pattern of mRNAs specific to early muscle precursor cell markers, we revisited these experiments using two methods to assess muscle terminal differentiation. First, injection of fluorescent dyes before surgery was used to determine whether ventrolateral lip cells transform from epithelial cells to elongated myocytes. Second, an antibody to a terminal differentiation marker and a new monoclonal antibody that recognises avian and mammalian Pax3 were used for immunohistochemistry to assess the transition from precursor cell to myocyte. The results support both hypotheses and show further that placing axial structures adjacent to the somite ventrolateral lip induces an axial pattern of myocyte terminal differentiation and elongation.


Asunto(s)
Extremidades/embriología , Músculos/embriología , Animales , Diferenciación Celular , Movimiento Celular , Embrión de Pollo , Coturnix , Proteínas de Unión al ADN/metabolismo , Colorantes Fluorescentes/farmacología , Inmunohistoquímica , Hibridación in Situ , Microscopía Fluorescente , Modelos Biológicos , Músculos/citología , Proteína MioD/metabolismo , Factor de Transcripción PAX3 , Factores de Transcripción Paired Box , ARN Mensajero/metabolismo , Transducción de Señal , Factores de Tiempo , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...