Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
HGG Adv ; : 100316, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38850022

RESUMEN

Copy number variants (CNVs) are genome-wide structural variations involving the duplication or deletion of large nucleotide sequences. While these types of variations can be commonly found in humans, large and rare CNVs are known to contribute to the development of various neurodevelopmental disorders (NDDs), including autism spectrum disorder (ASD). Nevertheless, given that these NDD-risk CNVs cover broad regions of the genome, it is particularly challenging to pinpoint the critical gene(s) responsible for the manifestation of the phenotype. In this study, we performed a meta-analysis of CNV data from 11,614 patients with NDDs and 4,031 controls from SFARI database to identify 41 NDD-risk CNV loci, including 24 novel regions. We also found evidence for dosage-sensitive genes within these regions being significantly enriched for known NDD-risk genes and pathways. In addition, a significant proportion of these genes was found to i) converge in protein-protein interaction networks; ii) be among most expressed genes in the brain across all developmental stages; and iii) be hit by deletions that are significantly over-transmitted to individuals with ASD within multiplex ASD families from the iHART cohort. Finally, we conducted a burden analysis using 4,281 NDD cases from Decipher and iHART cohorts, and 2,504 neurotypical controls from 1,000 Genomes and iHART, that resulted in the validation of the association of 162 dosage sensitive genes driving risk for NDDs, including 22 novel NDD-risk genes. Importantly, most NDD-risk CNV loci entail multiple NDD-risk genes in agreement with a polygenic model associated with the majority of NDD cases.

2.
Biomedicines ; 12(5)2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38790952

RESUMEN

Autism spectrum disorder (ASD) is a heterogeneous group of neurodevelopmental disorders (NDDs) with a high unmet medical need. The diagnosis of ASD is currently based on behavior criteria, which overlooks the diversity of genetic, neurophysiological, and clinical manifestations. Failure to acknowledge such heterogeneity has hindered the development of efficient drug treatments for ASD and other NDDs. DEPI® (Databased Endophenotyping Patient Identification) is a systems biology, multi-omics, and machine learning-driven platform enabling the identification of subgroups of patients with NDDs and the development of patient-tailored treatments. In this study, we provide evidence for the validation of a first clinically and biologically defined subgroup of patients with ASD identified by DEPI, ASD Phenotype 1 (ASD-Phen1). Among 313 screened patients with idiopathic ASD, the prevalence of ASD-Phen1 was observed to be ~24% in 84 patients who qualified to be enrolled in the study. Metabolic and transcriptomic alterations differentiating patients with ASD-Phen1 were consistent with an over-activation of NF-κB and NRF2 transcription factors, as predicted by DEPI. Finally, the suitability of STP1 combination treatment to revert such observed molecular alterations in patients with ASD-Phen1 was determined. Overall, our results support the development of precision medicine-based treatments for patients diagnosed with ASD.

3.
Proc Natl Acad Sci U S A ; 120(31): e2215632120, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37506195

RESUMEN

Autism spectrum disorder (ASD) has a complex genetic architecture involving contributions from both de novo and inherited variation. Few studies have been designed to address the role of rare inherited variation or its interaction with common polygenic risk in ASD. Here, we performed whole-genome sequencing of the largest cohort of multiplex families to date, consisting of 4,551 individuals in 1,004 families having two or more autistic children. Using this study design, we identify seven previously unrecognized ASD risk genes supported by a majority of rare inherited variants, finding support for a total of 74 genes in our cohort and a total of 152 genes after combined analysis with other studies. Autistic children from multiplex families demonstrate an increased burden of rare inherited protein-truncating variants in known ASD risk genes. We also find that ASD polygenic score (PGS) is overtransmitted from nonautistic parents to autistic children who also harbor rare inherited variants, consistent with combinatorial effects in the offspring, which may explain the reduced penetrance of these rare variants in parents. We also observe that in addition to social dysfunction, language delay is associated with ASD PGS overtransmission. These results are consistent with an additive complex genetic risk architecture of ASD involving rare and common variation and further suggest that language delay is a core biological feature of ASD.


Asunto(s)
Trastorno del Espectro Autista , Trastornos del Desarrollo del Lenguaje , Niño , Humanos , Trastorno del Espectro Autista/genética , Herencia Multifactorial/genética , Padres , Secuenciación Completa del Genoma , Predisposición Genética a la Enfermedad
4.
Drug Discov Today ; 28(3): 103486, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36623795

RESUMEN

Autism spectrum disorder (ASD) is a heterogenous group of neurodevelopmental disorders (NDDs) with a high unmet medical need. Currently, ASD is diagnosed according to behavior-based criteria that overlook clinical and genomic heterogeneity, thus repeatedly resulting in failed clinical trials. Here, we summarize the scientific evidence pointing to the pressing need to create a precision medicine framework for ASD and other NDDs. We discuss the role of omics and systems biology to characterize more homogeneous disease subtypes with different underlying pathophysiological mechanisms and to determine corresponding tailored treatments. Finally, we provide recent initiatives towards tackling the complexity in NDDs for precision medicine and cost-effective drug discovery.


Asunto(s)
Trastorno del Espectro Autista , Humanos , Trastorno del Espectro Autista/genética , Trastorno del Espectro Autista/terapia , Medicina de Precisión , Genómica , Genoma
5.
Front Psychiatry ; 12: 722378, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34658958

RESUMEN

Fragile X syndrome (FXS) is the most frequent monogenic cause of autism or intellectual disability, and research on its pathogenetic mechanisms has provided important insights on this neurodevelopmental condition. Nevertheless, after 30 years of intense research, efforts to develop treatments have been mostly unsuccessful. The aim of this review is to compile evidence from existing research pointing to clinical, genetic, and therapeutic response heterogeneity in FXS and highlight the need of implementing precision medicine-based treatments. We comment on the high genetic and phenotypic heterogeneity present in FXS, as a contributing factor to the difficulties found during drug development. Given that several clinical trials have showed a non-negligeable fraction of positive responders to drugs targeting core FXS symptoms, we propose that success of clinical trials can be achieved by tackling the underlying heterogeneity in FXS by accurately stratifying patients into drug-responder subpopulations. These precision medicine-based approaches, which can be first applied to well-defined monogenic diseases such as FXS, can also serve to define drug responder profiles based on specific biomarkers or phenotypic features that can associate patients with different genetic backgrounds to a same candidate drug, thus repositioning a same drug for a larger number of patients with NDDs.

6.
Nat Neurosci ; 24(6): 799-809, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33958802

RESUMEN

The most significant common variant association for schizophrenia (SCZ) reflects increased expression of the complement component 4A (C4A). Yet, it remains unclear how C4A interacts with other SCZ risk genes or whether the complement system more broadly is implicated in SCZ pathogenesis. Here, we integrate several existing, large-scale genetic and transcriptomic datasets to interrogate the functional role of the complement system and C4A in the human brain. Unexpectedly, we find no significant genetic enrichment among known complement system genes for SCZ. Conversely, brain co-expression network analyses using C4A as a seed gene reveal that genes downregulated when C4A expression increases exhibit strong and specific genetic enrichment for SCZ risk. This convergent genomic signal reflects synaptic processes, is sexually dimorphic and most prominent in frontal cortical brain regions, and is accentuated by smoking. Overall, these results indicate that synaptic pathways-rather than the complement system-are the driving force conferring SCZ risk.


Asunto(s)
Encéfalo/patología , Redes Reguladoras de Genes/genética , Predisposición Genética a la Enfermedad/genética , Esquizofrenia/genética , Esquizofrenia/patología , Sinapsis/patología , Bases de Datos Genéticas , Femenino , Expresión Génica , Estudio de Asociación del Genoma Completo/métodos , Humanos , Masculino , Estudios Retrospectivos , Transducción de Señal/genética
7.
Cell ; 178(4): 850-866.e26, 2019 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-31398340

RESUMEN

We performed a comprehensive assessment of rare inherited variation in autism spectrum disorder (ASD) by analyzing whole-genome sequences of 2,308 individuals from families with multiple affected children. We implicate 69 genes in ASD risk, including 24 passing genome-wide Bonferroni correction and 16 new ASD risk genes, most supported by rare inherited variants, a substantial extension of previous findings. Biological pathways enriched for genes harboring inherited variants represent cytoskeletal organization and ion transport, which are distinct from pathways implicated in previous studies. Nevertheless, the de novo and inherited genes contribute to a common protein-protein interaction network. We also identified structural variants (SVs) affecting non-coding regions, implicating recurrent deletions in the promoters of DLG2 and NR3C2. Loss of nr3c2 function in zebrafish disrupts sleep and social function, overlapping with human ASD-related phenotypes. These data support the utility of studying multiplex families in ASD and are available through the Hartwell Autism Research and Technology portal.


Asunto(s)
Trastorno del Espectro Autista/genética , Predisposición Genética a la Enfermedad/genética , Linaje , Mapas de Interacción de Proteínas/genética , Animales , Niño , Bases de Datos Genéticas , Modelos Animales de Enfermedad , Femenino , Eliminación de Gen , Guanilato-Quinasas/genética , Humanos , Patrón de Herencia/genética , Aprendizaje Automático , Masculino , Núcleo Familiar , Regiones Promotoras Genéticas/genética , Receptores de Mineralocorticoides/genética , Factores de Riesgo , Proteínas Supresoras de Tumor/genética , Secuenciación Completa del Genoma , Pez Cebra/genética
8.
Methods ; 118-119: 163-170, 2017 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-27816523

RESUMEN

Deciphering the structural and energetic determinants of protein-RNA interactions harbors the potential to understand key cell processes at molecular level, such as gene expression and regulation. With this purpose, computational methods like docking aim to complement current biophysical and structural biology efforts. However, the few reported docking algorithms for protein-RNA interactions show limited predictive success rates, mainly due to incomplete sampling of the conformational space of both the protein and the RNA molecules, as well as to the difficulties of the scoring function in identifying the correct docking models. Here, we have tested the predictive value of a variety of knowledge-based and energetic scoring functions on a recently published protein-RNA docking benchmark and developed a scoring function able to efficiently discriminate docking decoys. We first performed docking calculations with the bound conformation, which allowed us to analyze the problem in optimal conditions. We found that geometry-based terms and electrostatics were the most important scoring terms, while binding propensities and desolvation were much less relevant for the scoring of protein-RNA models. This is in contrast with what we observed for protein-protein docking. The results also showed an interesting dependence of the predictive rates on the flexibility of the protein molecule, which arises from the observed higher positive charge of flexible interfaces and provides hints for future development of more efficient protein-RNA docking methods.


Asunto(s)
Algoritmos , Biología Computacional/estadística & datos numéricos , Modelos Estadísticos , Simulación del Acoplamiento Molecular/estadística & datos numéricos , Proteínas de Unión al ARN/química , ARN/química , Benchmarking , Sitios de Unión , Conformación de Ácido Nucleico , Unión Proteica , Conformación Proteica , Proyectos de Investigación , Electricidad Estática , Termodinámica
9.
Oncotarget ; 6(12): 9766-80, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25825981

RESUMEN

EMMPRIN/CD147 is mainly known for its protease inducing function but a role in promoting tumor angiogenesis has also been demonstrated. This study provides evidence that EMMPRIN is a new coreceptor for the VEGFR-2 tyrosine kinase receptor in both endothelial and tumor cells, as it directly interacts with it and regulates its activation by its VEGF ligand, signalling and functional consequences both in vitro and in vivo. Computational docking analyses and mutagenesis studies identified a molecular binding site in the extracellular domain of EMMPRIN located close to the cell membrane and containing the amino acids 195/199. EMMPRIN is overexpressed in cancer and hence is able to further potentiate VEGFR-2 activation, suggesting that a combinatory therapy of an antiangiogenic drug together with an inhibitor of EMMPRIN/VEGFR-2 interaction may have a greater impact on inhibiting angiogenesis and malignancy.


Asunto(s)
Basigina/metabolismo , Regulación Neoplásica de la Expresión Génica , Factor A de Crecimiento Endotelial Vascular/metabolismo , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo , Inhibidores de la Angiogénesis/química , Animales , Sitios de Unión , Línea Celular , Línea Celular Tumoral , Membrana Celular/metabolismo , Movimiento Celular , Sistema Libre de Células , Simulación por Computador , Femenino , Silenciador del Gen , Humanos , Ligandos , Ratones , Ratones Desnudos , Microvasos/citología , Mutagénesis , Mutagénesis Sitio-Dirigida , Trasplante de Neoplasias , Neovascularización Patológica , Fosforilación , Unión Proteica , Estructura Terciaria de Proteína , ARN Interferente Pequeño/metabolismo , Proteínas Recombinantes/metabolismo , Transducción de Señal
10.
Proc Natl Acad Sci U S A ; 111(8): 2966-71, 2014 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-24516142

RESUMEN

Heteromeric amino acid transporters (HATs) are the unique example, known in all kingdoms of life, of solute transporters composed of two subunits linked by a conserved disulfide bridge. In metazoans, the heavy subunit is responsible for the trafficking of the heterodimer to the plasma membrane, and the light subunit is the transporter. HATs are involved in human pathologies such as amino acidurias, tumor growth and invasion, viral infection and cocaine addiction. However structural information about interactions between the heavy and light subunits of HATs is scarce. In this work, transmission electron microscopy and single-particle analysis of purified human 4F2hc/L-type amino acid transporter 2 (LAT2) heterodimers overexpressed in the yeast Pichia pastoris, together with docking analysis and crosslinking experiments, reveal that the extracellular domain of 4F2hc interacts with LAT2, almost completely covering the extracellular face of the transporter. 4F2hc increases the stability of the light subunit LAT2 in detergent-solubilized Pichia membranes, allowing functional reconstitution of the heterodimer into proteoliposomes. Moreover, the extracellular domain of 4F2hc suffices to stabilize solubilized LAT2. The interaction of 4F2hc with LAT2 gives insights into the structural bases for light subunit recognition and the stabilizing role of the ancillary protein in HATs.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/química , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Cadena Pesada de la Proteína-1 Reguladora de Fusión/química , Cadena Pesada de la Proteína-1 Reguladora de Fusión/metabolismo , Modelos Moleculares , Conformación Proteica , Western Blotting , Cromatografía de Afinidad , Cromatografía en Gel , Humanos , Microscopía Electrónica de Transmisión , Pichia , Unión Proteica
11.
Proteins ; 82(4): 620-32, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24155158

RESUMEN

We report the first assessment of blind predictions of water positions at protein-protein interfaces, performed as part of the critical assessment of predicted interactions (CAPRI) community-wide experiment. Groups submitting docking predictions for the complex of the DNase domain of colicin E2 and Im2 immunity protein (CAPRI Target 47), were invited to predict the positions of interfacial water molecules using the method of their choice. The predictions-20 groups submitted a total of 195 models-were assessed by measuring the recall fraction of water-mediated protein contacts. Of the 176 high- or medium-quality docking models-a very good docking performance per se-only 44% had a recall fraction above 0.3, and a mere 6% above 0.5. The actual water positions were in general predicted to an accuracy level no better than 1.5 Å, and even in good models about half of the contacts represented false positives. This notwithstanding, three hotspot interface water positions were quite well predicted, and so was one of the water positions that is believed to stabilize the loop that confers specificity in these complexes. Overall the best interface water predictions was achieved by groups that also produced high-quality docking models, indicating that accurate modelling of the protein portion is a determinant factor. The use of established molecular mechanics force fields, coupled to sampling and optimization procedures also seemed to confer an advantage. Insights gained from this analysis should help improve the prediction of protein-water interactions and their role in stabilizing protein complexes.


Asunto(s)
Colicinas/química , Mapeo de Interacción de Proteínas , Agua/química , Algoritmos , Biología Computacional , Modelos Moleculares , Simulación del Acoplamiento Molecular , Conformación Proteica
12.
Nucleic Acids Res ; 41(21): 9956-66, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23980029

RESUMEN

Translin is a highly conserved RNA- and DNA-binding protein that plays essential roles in eukaryotic cells. Human translin functions as an octamer, but in the octameric crystallographic structure, the residues responsible for nucleic acid binding are not accessible. Moreover, electron microscopy data reveal very different octameric configurations. Consequently, the functional assembly and the mechanism of nucleic acid binding by the protein remain unclear. Here, we present an integrative study combining small-angle X-ray scattering (SAXS), site-directed mutagenesis, biochemical analysis and computational techniques to address these questions. Our data indicate a significant conformational heterogeneity for translin in solution, formed by a lesser-populated compact octameric state resembling the previously solved X-ray structure, and a highly populated open octameric state that had not been previously identified. On the other hand, our SAXS data and computational analyses of translin in complex with the RNA oligonucleotide (GU)12 show that the internal cavity found in the octameric assemblies can accommodate different nucleic acid conformations. According to this model, the nucleic acid binding residues become accessible for binding, which facilitates the entrance of the nucleic acids into the cavity. Our data thus provide a structural basis for the functions that translin performs in RNA metabolism and transport.


Asunto(s)
Proteínas de Unión al ADN/química , ARN/química , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Humanos , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Multimerización de Proteína , ARN/metabolismo
13.
Proteins ; 81(12): 2192-200, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23934865

RESUMEN

In addition to protein-protein docking, this CAPRI edition included new challenges, like protein-water and protein-sugar interactions, or the prediction of binding affinities and ΔΔG changes upon mutation. Regarding the standard protein-protein docking cases, our approach, mostly based on the pyDock scheme, submitted correct models as predictors and as scorers for 67% and 57% of the evaluated targets, respectively. In this edition, available information on known interface residues hardly made any difference for our predictions. In one of the targets, the inclusion of available experimental small-angle X-ray scattering (SAXS) data using our pyDockSAXS approach slightly improved the predictions. In addition to the standard protein-protein docking assessment, new challenges were proposed. One of the new problems was predicting the position of the interface water molecules, for which we submitted models with 20% and 43% of the water-mediated native contacts predicted as predictors and scorers, respectively. Another new problem was the prediction of protein-carbohydrate binding, where our submitted model was very close to being acceptable. A set of targets were related to the prediction of binding affinities, in which our pyDock scheme was able to discriminate between natural and designed complexes with area under the curve = 83%. It was also proposed to estimate the effect of point mutations on binding affinity. Our approach, based on machine learning methods, showed high rates of correctly classified mutations for all cases. The overall results were highly rewarding, and show that the field is ready to move forward and face new interesting challenges in interactomics.


Asunto(s)
Carbohidratos/química , Simulación del Acoplamiento Molecular , Proteínas/química , Agua/química , Biología Computacional , Mutación , Unión Proteica , Conformación Proteica , Dispersión del Ángulo Pequeño , Programas Informáticos , Difracción de Rayos X
14.
Proteins ; 81(11): 1980-7, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23843247

RESUMEN

Community-wide blind prediction experiments such as CAPRI and CASP provide an objective measure of the current state of predictive methodology. Here we describe a community-wide assessment of methods to predict the effects of mutations on protein-protein interactions. Twenty-two groups predicted the effects of comprehensive saturation mutagenesis for two designed influenza hemagglutinin binders and the results were compared with experimental yeast display enrichment data obtained using deep sequencing. The most successful methods explicitly considered the effects of mutation on monomer stability in addition to binding affinity, carried out explicit side-chain sampling and backbone relaxation, evaluated packing, electrostatic, and solvation effects, and correctly identified around a third of the beneficial mutations. Much room for improvement remains for even the best techniques, and large-scale fitness landscapes should continue to provide an excellent test bed for continued evaluation of both existing and new prediction methodologies.


Asunto(s)
Bases de Datos de Proteínas , Mapeo de Interacción de Proteínas , Algoritmos , Mutación , Unión Proteica
15.
Proteins ; 80(7): 1872-82, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22488990

RESUMEN

We present here an extended protein-RNA docking benchmark composed of 71 test cases in which the coordinates of the interacting protein and RNA molecules are available from experimental structures, plus an additional set of 35 cases in which at least one of the interacting subunits is modeled by homology. All cases in the experimental set have available unbound protein structure, and include five cases with available unbound RNA structure, four cases with a pseudo-unbound RNA structure, and 62 cases with the bound RNA form. The additional set of modeling cases comprises five unbound-model, eight model-unbound, 19 model-bound, and three model-model protein-RNA cases. The benchmark covers all major functional categories and contains cases with different degrees of difficulty for docking, as far as protein and RNA flexibility is concerned. The main objective of this benchmark is to foster the development of protein-RNA docking algorithms and to contribute to the better understanding and prediction of protein-RNA interactions. The benchmark is freely available at http://life.bsc.es/pid/protein-rna-benchmark.


Asunto(s)
Bases de Datos de Proteínas , Proteínas de Unión al ARN/química , ARN/química , Algoritmos , Biología Computacional/métodos , Modelos Químicos , Modelos Moleculares , Conformación de Ácido Nucleico , Unión Proteica , Conformación Proteica , ARN/metabolismo , Proteínas de Unión al ARN/metabolismo
16.
J Mol Biol ; 414(2): 289-302, 2011 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-22001016

RESUMEN

The CAPRI (Critical Assessment of Predicted Interactions) and CASP (Critical Assessment of protein Structure Prediction) experiments have demonstrated the power of community-wide tests of methodology in assessing the current state of the art and spurring progress in the very challenging areas of protein docking and structure prediction. We sought to bring the power of community-wide experiments to bear on a very challenging protein design problem that provides a complementary but equally fundamental test of current understanding of protein-binding thermodynamics. We have generated a number of designed protein-protein interfaces with very favorable computed binding energies but which do not appear to be formed in experiments, suggesting that there may be important physical chemistry missing in the energy calculations. A total of 28 research groups took up the challenge of determining what is missing: we provided structures of 87 designed complexes and 120 naturally occurring complexes and asked participants to identify energetic contributions and/or structural features that distinguish between the two sets. The community found that electrostatics and solvation terms partially distinguish the designs from the natural complexes, largely due to the nonpolar character of the designed interactions. Beyond this polarity difference, the community found that the designed binding surfaces were, on average, structurally less embedded in the designed monomers, suggesting that backbone conformational rigidity at the designed surface is important for realization of the designed function. These results can be used to improve computational design strategies, but there is still much to be learned; for example, one designed complex, which does form in experiments, was classified by all metrics as a nonbinder.


Asunto(s)
Modelos Moleculares , Proteínas/química , Sitios de Unión , Unión Proteica
17.
Proteins ; 78(15): 3182-8, 2010 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-20602351

RESUMEN

We describe here our results in the last CAPRI edition. We have participated in all targets, both as predictors and as scorers, using our pyDock docking methodology. The new challenges (homology-based modeling of the interacting subunits, domain-domain assembling, and protein-RNA interactions) have pushed our computer tools to the limits and have encouraged us to devise new docking approaches. Overall, the results have been quite successful, in line with previous editions, especially considering the high difficulty of some of the targets. Our docking approaches succeeded in five targets as predictors or as scorers (T29, T34, T35, T41, and T42). Moreover, with the inclusion of available information on the residues expected to be involved in the interaction, our protocol would have also succeeded in two additional cases (T32 and T40). In the remaining targets (except T37), results were equally poor for most of the groups. We submitted the best model (in ligand RMSD) among scorers for the unbound-bound target T29, the second best model among scorers for the protein-RNA target T34, and the only correct model among predictors for the domain assembly target T35. In summary, our excellent results for the new proposed challenges in this CAPRI edition showed the limitations and applicability of our approaches and encouraged us to continue developing methodologies for automated biomolecular docking.


Asunto(s)
Biología Computacional/métodos , Modelos Químicos , Proteínas de Unión al ARN/metabolismo , ARN/metabolismo , Algoritmos , Animales , Bovinos , Análisis por Conglomerados , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Modelos Moleculares , Método de Montecarlo , Unión Proteica , ARN/química , Proteínas de Unión al ARN/química
18.
Nucleic Acids Res ; 38(9): 2975-89, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20081200

RESUMEN

Translin is a single-stranded RNA- and DNA-binding protein, which has been highly conserved in eukaryotes, from man to Schizosaccharomyces pombe. TRAX is a Translin paralog associated with Translin, which has coevolved with it. We generated structural models of the S. pombe Translin (spTranslin), based on the solved 3D structure of the human ortholog. Using several bioinformatics computation tools, we identified in the equatorial part of the protein a putative nucleic acids interaction surface, which includes many polar and positively charged residues, mostly arginines, surrounding a shallow cavity. Experimental verification of the bioinformatics predictions was obtained by assays of nucleic acids binding to amino acid substitution variants made in this region. Bioinformatics combined with yeast two-hybrid assays and proteomic analyses of deletion variants, also identified at the top of the spTranslin structure a region required for interaction with spTRAX, and for spTranslin dimerization. In addition, bioinformatics predicted the presence of a second protein-protein interaction site at the bottom of the spTranslin structure. Similar nucleic acid and protein interaction sites were also predicted for the human Translin. Thus, our results appear to generally apply to the Translin family of proteins, and are expected to contribute to a further elucidation of their functions.


Asunto(s)
Proteínas de Unión al ADN/química , Proteínas de Unión al ARN/química , Proteínas de Schizosaccharomyces pombe/química , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Sitios de Unión , Proteínas Portadoras/metabolismo , Biología Computacional , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Dominios y Motivos de Interacción de Proteínas , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Alineación de Secuencia , Técnicas del Sistema de Dos Híbridos
19.
Pac Symp Biocomput ; : 293-301, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-19908381

RESUMEN

Despite the importance of protein-RNA interactions in the cellular context, the number of available protein-RNA complex structures is still much lower than those of other biomolecules. As a consequence, few computational studies have been addressed towards protein-RNA complexes, and to our knowledge, no systematic benchmarking of protein-RNA docking has been reported. In this study we have extracted new pairwise residue-ribonucleotide interface propensities for protein-RNA, which can be used as statistical potentials for scoring of protein-RNA docking poses. We show here a new protein-RNA docking approach based on FTDock generation of rigid-body docking poses, which are later scored by these statistical residue-ribonucleotide potentials. The method has been successfully benchmarked in a set of 12 protein-RNA cases. The results show that FTDock is able to generate near-native solutions in more than half of the cases, and that it can rank near-native solutions significantly above random. In practically all these cases, our propensity-based scoring helps to improve the docking results, finding a near-native solution within rank 100 in 43% of them. In a remarkable case, the near-native solution was ranked 1 after the propensity-based scoring. Other previously described propensity potentials can also be used for scoring, with slightly worse performance. This new protein-RNA docking protocol permits a fast scoring of rigid-body docking poses in order to select a small number of docking orientations, which can be later evaluated with more sophisticated energy-based scoring functions.


Asunto(s)
Proteínas/química , ARN/química , Sitios de Unión , Biología Computacional , Bases de Datos de Proteínas , Modelos Moleculares , Simulación de Dinámica Molecular , Conformación de Ácido Nucleico , Unión Proteica , Conformación Proteica , Proteínas/metabolismo , ARN/metabolismo , Programas Informáticos
20.
Proteins ; 78(1): 25-35, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19714772

RESUMEN

Protein-RNA interactions are essential in living organisms and they are involved in very different and important cellular processes. Thus, understanding protein-RNA recognition at molecular level is a key goal not only from a basic biological point of view but also for biotechnological and therapeutic purposes. On basis of the most updated available set of nonredundant X-ray structures of protein-RNA complexes, we have computed protein-RNA interface propensities for ribonucleotides and amino acid residues. The results show several protein residues with high tendency to bind RNA, such as arginine, lysine, and histidine. However, we could not observe any clear preferences for protein binding among the different ribonucleotides. We applied these propensity values to predict RNA-binding areas on proteins, using an ad hoc algorithm called OPRA (Optimal Protein-RNA Area). First, for each protein residue, we derived a predictive score from its corresponding protein-RNA interface propensity weighed by its accessible surface area (ASA). Then, optimal patch energy scores were computed for each residue by adding up the individual scores of the neighboring surface residues. The resulting patch scores correlate well with the known RNA-binding sites on protein surfaces. The OPRA method has been benchmarked on a test set of 30 unbound proteins involved in protein-RNA complexes of known structure, where it is able to successfully predict RNA-binding sites on protein surfaces with around 80% positive predictive value. This can be useful for identifying potential RNA-binding sites on proteins, and can help to model protein-RNA interactions of biological and therapeutic interest.


Asunto(s)
Biología Computacional/métodos , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/metabolismo , ARN/metabolismo , Algoritmos , Animales , Sitios de Unión , Bases de Datos de Proteínas , Humanos , Modelos Moleculares , Unión Proteica , Conformación Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...