Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Neuropharmacology ; 226: 109385, 2023 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-36603798

RESUMEN

Studies investigated how stressful experiences modulate physiological and behavioral responses and the consequences of stress-induced corticosterone release in anxiety-like behavior. Adolescence is crucial to brain maturation, and several neurobiological changes in this period lead individuals to increased susceptibility or resilience to aversive situations. Despite the effects of stress in adults, information about adolescents' responses to acute stress is lacking. We aimed to understand how adolescence affects acute stress responses. Male adolescent rats (30 days old) were 2 h restrained, and anxiety-like behaviors were measured immediately or 10 days after stress in the elevated plus-maze (EPM) and the light-dark box (LDB) tests. To verify the importance of CORT modulation in stress-induced anxiety, another group of rats was treated, 30 min before restraint, with metyrapone to blunt the stress-induced CORT peak and tested immediately after stress. To show that stress effects on behavior were age-dependent, another set of rats was tested in two different periods - early adolescence (30 days old) and mid-adolescence (40 days old) and were treated or not with metyrapone before the stress session and tested immediately or ten days later in the LDB test. Only early adolescent male rats were resilient to delayed anxiety-like behavior in EPM and LDB tests. Metyrapone treatment increased the rats' exploration immediately and ten days after stress. These data suggest a specific age at which adolescent rats are resilient to the delayed effects of acute restraint stress and that the metyrapone treatment has long-term behavioral consequences.


Asunto(s)
Glucocorticoides , Metirapona , Ratas , Animales , Masculino , Glucocorticoides/farmacología , Metirapona/farmacología , Ansiedad/inducido químicamente , Trastornos de Ansiedad , Corticosterona/farmacología , Estrés Psicológico/complicaciones , Conducta Animal
2.
Psychoneuroendocrinology ; 141: 105757, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35427951

RESUMEN

Previous studies have suggested that the basolateral amygdala (BLA) and the ventral hippocampus (VH) are critical sites for predator-related fear memory. Predator exposure is an intense emotional experience and should increase plasmatic corticosterone likely to modulate the emotion-related memories. However, it is unclear whether the BLA and VH harbor plastic events underlying predator-related fear memory storage and how molecular and endocrine mechanisms interact to modulate memory to the predatory threat. Here, we first examined the effects of protein synthesis inhibition in the BLA and VH on fear memory to a predatory threat. We next evaluated how exposure to a predatory threat impacts the corticosterone release and how the inhibition of corticosterone synthesis can influence predator-related fear memory. Finally, we examined how predator exposure triggers the activation of glucocorticoid and mineralocorticoid receptors in the BLA and VH and whether the GR antagonist injection affects predator-related fear memory. We showed that predator-related contextual fear is dependent on protein synthesis in the BLA and VH. Moreover, we described the impact of rapid glucocorticoid release during predatory exposure on the formation of contextual fear responses and that GR-induced signaling facilitates memory consolidation within the BLA and VH. The results are relevant in understanding how life-threatening situations such as a predator encounter impact fear memory storage and open exciting perspectives to investigate GR-induced proteins as targets to deciphering and manipulating aversive memories.


Asunto(s)
Complejo Nuclear Basolateral , Complejo Nuclear Basolateral/metabolismo , Corticosterona/metabolismo , Miedo/fisiología , Glucocorticoides/metabolismo , Glucocorticoides/farmacología , Hipocampo/metabolismo , Receptores de Glucocorticoides/metabolismo
3.
Neuroscience ; 393: 273-283, 2018 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-30316912

RESUMEN

Chronic psychogenic stress can increase neuronal calcium influx and generate the intracellular accumulation of oxidative (ROS) and nitrosative (RNS) reactive species, disrupting synaptic transmission in the brain. These molecules impair the Na,K-ATPase (NKA) activity, whose malfunction has been related to neuropsychiatric disorders, including anxiety, depression, schizophrenia, and neurodegenerative diseases. In this study, we assessed how 14 days of restraint stress in rats affect NKA activity via oxidative/nitrosative damage in the frontal cortex (FCx), a crucial region for emotional and cognitive control. One day after the last stress session (S14 + 1d), but not immediately after the last stress session (S14), α2,3-NKA activity was significantly reduced in the FCx, without changes in the protein levels. The S14 + 1d animals also showed increased lipid peroxidation, iNOS, and AP-1 activities, as well as TNF-α protein levels, evidencing oxidative stress and neuroinflammation. No cellular death or neurodegeneration was observed in the FCx of S14 + 1d animals. Pharmacological inhibition of iNOS or COX-2 before each stress session prevented lipid peroxidation and the α2,3-NKA activity loss. Our results show that repeated restraint exposure for 14 days decreases the activity of α2,3-NKA in FCx 24 h after the last stress, an effect associated with augmented inflammatory response and oxidative and nitrosative damage and suggest new pathophysiological roles to neuroinflammation in neuropsychiatric diseases.


Asunto(s)
Lóbulo Frontal/metabolismo , Estrés Nitrosativo/fisiología , Estrés Oxidativo/fisiología , Restricción Física , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Animales , Ciclooxigenasa 2/metabolismo , Depresión/metabolismo , Masculino , Ratas Wistar , Restricción Física/métodos
4.
Psychoneuroendocrinology ; 98: 6-10, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30081343

RESUMEN

Previous studies showed that acute restraint stress or transient elevation of glucocorticoid (GC) stress hormones produces emergent changes in both anxiety behavior and dendritic branches in the basolateral amygdala complex (BLA) of rats. In this work, we demonstrate that exposure to environmental enrichment (EE) prevented stress-induced increases in anxiety (emerging 10 days post-stress) in adult rats without blocking stress-induced dendritic branch remodeling in the BLA nor stress-induced enhancement of GC serum levels.


Asunto(s)
Plasticidad Neuronal/fisiología , Estimulación Física/métodos , Estrés Psicológico/fisiopatología , Amígdala del Cerebelo , Animales , Ansiedad/fisiopatología , Trastornos de Ansiedad , Complejo Nuclear Basolateral/fisiología , Dendritas , Ambiente , Masculino , Ratas , Ratas Wistar , Restricción Física/psicología
5.
Behav Neurosci ; 130(1): 29-35, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26619084

RESUMEN

Extensive research has shown the involvement of the central cholinergic system in the acquisition and consolidation of tasks involving conditioned fear responses, such as those observed in contextual fear conditioning (CFC), tone fear conditioning (TFC) and inhibitory avoidance (IA). However, there are few data concerning the role of this system in the memory retrieval process. Therefore, the present study aimed to compare the effects of the administration of an M1 antagonist on retrieval during these tasks. For each behavioral procedure, groups of male Wistar rats were trained. Twenty-four hr later, they were treated with different doses of dicyclomine (16, 32, or 64 mg/kg, i.p.) or with saline 30 min before the test session. The results showed that dicyclomine at doses of 16 and 32 mg/kg impaired CFC without interfering with IA performance. Moreover, only 64 mg/kg impaired TFC. These data suggest that M1 muscarinic receptors contribute to memory retrieval in CFC and TFC but are not essential for retrieval in IA.


Asunto(s)
Reacción de Prevención/efectos de los fármacos , Diciclomina/farmacología , Emociones/efectos de los fármacos , Recuerdo Mental/efectos de los fármacos , Antagonistas Muscarínicos/farmacología , Análisis de Varianza , Animales , Condicionamiento Clásico/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Miedo/efectos de los fármacos , Reacción Cataléptica de Congelación/efectos de los fármacos , Masculino , Ratas , Ratas Wistar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA