Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
1.
Int J Mol Sci ; 24(12)2023 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-37373413

RESUMEN

Introducing or correcting disease-causing mutations through genome editing in human pluripotent stem cells (hPSCs) followed by tissue-specific differentiation provide sustainable models of multiorgan diseases, such as cystic fibrosis (CF). However, low editing efficiency resulting in extended cell culture periods and the use of specialised equipment for fluorescence activated cell sorting (FACS) make hPSC genome editing still challenging. We aimed to investigate whether a combination of cell cycle synchronisation, single-stranded oligodeoxyribonucleotides, transient selection, manual clonal isolation, and rapid screening can improve the generation of correctly modified hPSCs. Here, we introduced the most common CF mutation, ΔF508, into the CFTR gene, using TALENs into hPSCs, and corrected the W1282X mutation using CRISPR-Cas9, in human-induced PSCs. This relatively simple method achieved up to 10% efficiency without the need for FACS, generating heterozygous and homozygous gene edited hPSCs within 3-6 weeks in order to understand genetic determinants of disease and precision medicine.


Asunto(s)
Edición Génica , Células Madre Pluripotentes , Humanos , Edición Génica/métodos , Sistemas CRISPR-Cas/genética , Células Madre Pluripotentes/metabolismo , Mutación , Heterocigoto
2.
Hepatology ; 78(4): 1050-1063, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-36089330

RESUMEN

BACKGROUND AND AIMS: Hepatocellular carcinoma (HCC) is a leading cause of cancer-related death. The NF-κB transcription factor family subunit c-Rel is typically protumorigenic; however, it has recently been reported as a tumor suppressor. Here, we investigated the role of c-Rel in HCC. APPROACH AND RESULTS: Histological and transcriptional studies confirmed expression of c-Rel in human patients with HCC, but low c-Rel expression correlated with increased tumor cell proliferation and mutational burden and was associated with advanced disease. In vivo , global ( Rel-/- ) and epithelial specific ( RelAlb ) c-Rel knockout mice develop more tumors, with a higher proliferative rate and increased DNA damage, than wild-type (WT) controls 30 weeks after N-diethylnitrosamine injury. However, tumor burden was comparable when c-Rel was deleted in hepatocytes once tumors were established, suggesting c-Rel signaling is important for preventing HCC initiation after genotoxic injury, rather than for HCC progression. In vitro , Rel-/- hepatocytes were more susceptible to genotoxic injury than WT controls. ATM-CHK2 DNA damage response pathway proteins were suppressed in Rel-/- hepatocytes following genotoxic injury, suggesting that c-Rel is required for effective DNA repair. To determine if c-Rel inhibition sensitizes cancer cells to chemotherapy, by preventing repair of chemotherapy-induced DNA damage, thus increasing tumor cell death, we administered single or combination doxorubicin and IT-603 (c-Rel inhibitor) therapy in an orthotopic HCC model. Indeed, combination therapy was more efficacious than doxorubicin alone. CONCLUSION: Hepatocyte c-Rel signaling limits genotoxic injury and subsequent HCC burden. Inhibiting c-Rel as an adjuvant therapy increased the effectiveness of DNA damaging agents and reduced HCC growth.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animales , Humanos , Ratones , Carcinogénesis/genética , Carcinoma Hepatocelular/patología , Daño del ADN , Doxorrubicina/farmacología , Hepatocitos/metabolismo , Neoplasias Hepáticas/metabolismo , Ratones Noqueados , FN-kappa B/metabolismo , Proteínas Proto-Oncogénicas c-rel/metabolismo
4.
Biochem J ; 479(19): 2063-2086, 2022 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-36240066

RESUMEN

Previously, we discovered that deletion of c-Rel in the Eµ-Myc mouse model of lymphoma results in earlier onset of disease, a finding that contrasted with the expected function of this NF-κB subunit in B-cell malignancies. Here we report that Eµ-Myc/cRel-/- cells have an unexpected and major defect in the CHK1 pathway. Total and phospho proteomic analysis revealed that Eµ-Myc/cRel-/- lymphomas highly resemble wild-type (WT) Eµ-Myc lymphomas treated with an acute dose of the CHK1 inhibitor (CHK1i) CCT244747. Further analysis demonstrated that this is a consequence of Eµ-Myc/cRel-/- lymphomas having lost expression of CHK1 protein itself, an effect that also results in resistance to CCT244747 treatment in vivo. Similar down-regulation of CHK1 protein levels was also seen in CHK1i resistant U2OS osteosarcoma and Huh7 hepatocellular carcinoma cells. Further investigation revealed that the deubiquitinase USP1 regulates CHK1 proteolytic degradation and that its down-regulation in our model systems is responsible, at least in part, for these effects. We demonstrate that treating WT Eµ-Myc lymphoma cells with the USP1 inhibitor ML323 was highly effective at reducing tumour burden in vivo. Targeting USP1 activity may thus be an alternative therapeutic strategy in MYC-driven tumours.


Asunto(s)
Linfoma , Proteínas Proto-Oncogénicas c-myc , Aminopiridinas , Animales , Enzimas Desubicuitinizantes , Linfoma/metabolismo , Linfoma/patología , Ratones , FN-kappa B/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Proteómica , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , Pirimidinas
5.
Biochem J ; 479(19): 2131-2151, 2022 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-36240067

RESUMEN

The development of resistance and the activation of bypass pathway signalling represents a major problem for the clinical application of protein kinase inhibitors. While investigating the effect of either a c-Rel deletion or RelAT505A phosphosite knockin on the Eµ-Myc mouse model of B-cell lymphoma, we discovered that both NF-κB subunit mutations resulted in CHK1 inhibitor resistance, arising from either loss or alteration of CHK1 activity, respectively. However, since Eµ-Myc lymphomas depend on CHK1 activity to cope with high levels of DNA replication stress and consequent genomic instability, it was not clear how these mutant NF-κB subunit lymphomas were able to survive. To understand these survival mechanisms and to identify potential compensatory bypass signalling pathways in these lymphomas, we applied a multi-omics strategy. With c-Rel-/- Eµ-Myc lymphomas we observed high levels of Phosphatidyl-inositol 3-kinase (PI3K) and AKT pathway activation. Moreover, treatment with the PI3K inhibitor Pictilisib (GDC-0941) selectively inhibited the growth of reimplanted c-Rel-/- and RelAT505A, but not wild type (WT) Eµ-Myc lymphomas. We also observed up-regulation of a RHO/RAC pathway gene expression signature in both Eµ-Myc NF-κB subunit mutation models. Further investigation demonstrated activation of the RHO/RAC effector p21-activated kinase (PAK) 2. Here, the PAK inhibitor, PF-3758309 successfully overcame resistance of RelAT505A but not WT lymphomas. These findings demonstrate that up-regulation of multiple bypass pathways occurs in CHK1 inhibitor resistant Eµ-Myc lymphomas. Consequently, drugs targeting these pathways could potentially be used as either second line or combinatorial therapies to aid the successful clinical application of CHK1 inhibitors.


Asunto(s)
Linfoma , Fosfatidilinositol 3-Quinasas , Animales , Inositol , Linfoma/tratamiento farmacológico , Linfoma/genética , Linfoma/metabolismo , Ratones , Ratones Transgénicos , FN-kappa B/metabolismo , Fosfatidilinositol 3-Quinasa/genética , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Inhibidores de Proteínas Quinasas , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , Regulación hacia Arriba , Quinasas p21 Activadas/genética
6.
Biochem J ; 479(19): 2115-2130, 2022 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-36240068

RESUMEN

Claspin is an adaptor protein required for ATR-dependent phosphorylation of CHK1 during S-phase following DNA replication stress. Claspin expression is highly variable in cancer, with low levels frequently correlating with poor patient survival. To learn more about the biological consequences of reduced Claspin expression and its effects on tumorigenesis, we investigated mice with a heterozygous knockout of the Clspn gene. Claspin haploinsufficiency resulted in reduced female fertility and a maternally inherited defect in oocyte meiosis I cell cycle progression. Furthermore, aged Clspn+/- mice developed spontaneous lymphoid hyperplasia and increased susceptibility to non-alcoholic fatty liver disease. Importantly, we demonstrate a tumour suppressor role for Claspin. Reduced Claspin levels result in increased liver damage and tumourigenesis in the DEN model of hepatocellular carcinoma. These data reveal that Clspn haploinsufficiency has widespread unanticipated biological effects and establishes the importance of Claspin as a regulatory node controlling tumorigenesis and multiple disease aetiologies.


Asunto(s)
Replicación del ADN , Haploinsuficiencia , Animales , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Carcinogénesis/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1) , Femenino , Fertilidad/genética , Hiperplasia , Ratones , Fosforilación
7.
Biochem J ; 479(11): 1121-1126, 2022 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-35647902

RESUMEN

Numerous studies, published over many years, have established the key role that the IκB kinase (IKK) subunits, α and ß, play in regulating the Nuclear Factor κB (NF-κB) pathway. This research generally concluded that their functions can be separated, with IKKß being the critical regulator of the canonical NF-κB pathway, while IKKα functions as the key activating kinase for the non-canonical pathway. However, other roles for these kinases have been described and several reports concluded that this separation of their functions may not always be the case. This commentary discusses the recent report by Biochem J. 479, 305-325, who elegantly demonstrate that in KRAS driven colorectal cancer cell lines, IKKα is an important regulator of the canonical NF-κB pathway. As is so often the case with trying to understand the complexity of NF-κB signalling, cellular context is everything.


Asunto(s)
Quinasa I-kappa B , FN-kappa B , Línea Celular , Quinasa I-kappa B/genética , Quinasa I-kappa B/metabolismo , FN-kappa B/genética , FN-kappa B/metabolismo , Proteínas Serina-Treonina Quinasas , Transducción de Señal
8.
Sci Rep ; 12(1): 7943, 2022 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-35562367

RESUMEN

The product encoded by the X-linked inhibitor of apoptosis (XIAP) gene is a multi-functional protein which not only controls caspase-dependent cell death, but also participates in inflammatory signalling, copper homeostasis, response to hypoxia and control of cell migration. Deregulation of XIAP, either by elevated expression or inherited genetic deletion, is associated with several human disease states. Reconciling XIAP-dependent signalling pathways with its role in disease progression is essential to understand how XIAP promotes the progression of human pathologies. In this study we have created a panel of genetically modified XIAP-null cell lines using TALENs and CRISPR/Cas9 to investigate the functional outcome of XIAP deletion. Surprisingly, in our genetically modified cells XIAP deletion had no effect on programmed cell death, but instead the primary phenotype we observed was a profound increase in cell migration rates. Furthermore, we found that XIAP-dependent suppression of cell migration was dependent on XIAPdependent control of C-RAF levels, a protein kinase which controls cell signalling pathways that regulate the cytoskeleton. These results suggest that XIAP is not necessary for control of the apoptotic signalling cascade, however it does have a critical role in controlling cell migration and motility that cannot be compensated for in XIAP-knockout cells.


Asunto(s)
Linfocitos Nulos , Proteínas Proto-Oncogénicas c-raf , Apoptosis , Caspasas/metabolismo , Linfocitos Nulos/metabolismo , Proteínas Proto-Oncogénicas c-raf/metabolismo , Transducción de Señal , Proteína Inhibidora de la Apoptosis Ligada a X/metabolismo
9.
Commun Biol ; 4(1): 1371, 2021 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-34880391

RESUMEN

The synaptonemal complex (SC) is a supramolecular protein scaffold that mediates chromosome synapsis and facilitates crossing over during meiosis. In mammals, SC proteins are generally assumed to have no other function. Here, we show that SC protein TEX12 also localises to centrosomes during meiosis independently of chromosome synapsis. In somatic cells, ectopically expressed TEX12 similarly localises to centrosomes, where it is associated with centrosome amplification, a pathology correlated with cancer development. Indeed, TEX12 is identified as a cancer-testis antigen and proliferation of some cancer cells is TEX12-dependent. Moreover, somatic expression of TEX12 is aberrantly activated via retinoic acid signalling, which is commonly disregulated in cancer. Structure-function analysis reveals that phosphorylation of TEX12 on tyrosine 48 is important for centrosome amplification but not for recruitment of TEX12 to centrosomes. We conclude that TEX12 normally localises to meiotic centrosomes, but its misexpression in somatic cells can contribute to pathological amplification and dysfunction of centrosomes in cancers.


Asunto(s)
Proteínas de Ciclo Celular/genética , Centrosoma/fisiología , Expresión Génica , Complejo Sinaptonémico/metabolismo , Animales , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , Humanos , Ratones
10.
Biochem J ; 478(3): 533-551, 2021 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-33438746

RESUMEN

Different types of DNA damage can initiate phosphorylation-mediated signalling cascades that result in stimulus specific pro- or anti-apoptotic cellular responses. Amongst its many roles, the NF-κB transcription factor RelA is central to these DNA damage response pathways. However, we still lack understanding of the co-ordinated signalling mechanisms that permit different DNA damaging agents to induce distinct cellular outcomes through RelA. Here, we use label-free quantitative phosphoproteomics to examine the temporal effects of exposure of U2OS cells to either etoposide (ETO) or hydroxyurea (HU) by monitoring the phosphorylation status of RelA and its protein binding partners. Although few stimulus-specific differences were identified in the constituents of phosphorylated RelA interactome after exposure to these DNA damaging agents, we observed subtle, but significant, changes in their phosphorylation states, as a function of both type and duration of treatment. The DNA double strand break (DSB)-inducing ETO invoked more rapid, sustained responses than HU, with regulated targets primarily involved in transcription, cell division and canonical DSB repair. Kinase substrate prediction of ETO-regulated phosphosites suggest abrogation of CDK and ERK1 signalling, in addition to the known induction of ATM/ATR. In contrast, HU-induced replicative stress mediated temporally dynamic regulation, with phosphorylated RelA binding partners having roles in rRNA/mRNA processing and translational initiation, many of which contained a 14-3-3ε binding motif, and were putative substrates of the dual specificity kinase CLK1. Our data thus point to differential regulation of key cellular processes and the involvement of distinct signalling pathways in modulating DNA damage-specific functions of RelA.


Asunto(s)
Daño del ADN , Procesamiento Proteico-Postraduccional , Factor de Transcripción ReIA/fisiología , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Apoptosis/efectos de los fármacos , Apoptosis/fisiología , Neoplasias Óseas/patología , Línea Celular Tumoral , Cromatografía Liquida , Secuencia de Consenso , Roturas del ADN de Doble Cadena , Replicación del ADN , ADN de Neoplasias/efectos de los fármacos , ADN de Neoplasias/metabolismo , Etopósido/farmacología , Humanos , Hidroxiurea/farmacología , Osteosarcoma/patología , Fosforilación , Mapas de Interacción de Proteínas , Proteínas Quinasas/metabolismo , Proteómica/métodos , Espectrometría de Masas en Tándem , Factores de Tiempo
12.
Nat Cancer ; 1(10): 976-989, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-33073241

RESUMEN

Oxidative phosphorylation (OXPHOS) defects caused by somatic mitochondrial DNA (mtDNA) mutations increase with age in human colorectal epithelium and are prevalent in colorectal tumours, but whether they actively contribute to tumorigenesis remains unknown. Here we demonstrate that mtDNA mutations causing OXPHOS defects are enriched during the human adenoma/carcinoma sequence, suggesting they may confer a metabolic advantage. To test this we deleted the tumour suppressor Apc in OXPHOS deficient intestinal stem cells in mice. The resulting tumours were larger than in control mice due to accelerated cell proliferation and reduced apoptosis. We show that both normal crypts and tumours undergo metabolic remodelling in response to OXPHOS deficiency by upregulating the de novo serine synthesis pathway (SSP). Moreover, normal human colonic crypts upregulate the SSP in response to OXPHOS deficiency prior to tumorigenesis. Our data show that age-associated OXPHOS deficiency causes metabolic remodelling that can functionally contribute to accelerated intestinal cancer development.


Asunto(s)
Neoplasias Intestinales , Enfermedades Mitocondriales , Animales , Transformación Celular Neoplásica/genética , ADN Mitocondrial/genética , Neoplasias Intestinales/genética , Ratones , Mitocondrias/genética , Mutación
13.
Biosci Rep ; 39(9)2019 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-31484794

RESUMEN

The nuclear factor-κB (NF-κB) family of transcription factors can directly or indirectly regulate many important areas of biology, including immunity, inflammation and cell survival. One intriguing aspect of NF-κB crosstalk with other cell signalling pathways is its regulation of mitochondrial biology, including biogenesis, metabolism and apoptosis. In addition to regulating the expression of mitochondrial genes encoded in the nucleus, NF-κB signalling components are also found within mitochondria themselves and associated with mitochondrial DNA. However, complete biochemical analysis of mitochondrial and sub-mitochondrial localisation of all NF-κB subunits has not been undertaken. Here, we show that only the RelA NF-κB subunit and its inhibitor IκBα reside within mitochondria, whilst p50 is found in the endoplasmic reticulum (ER). Fractionation of mitochondria revealed that only RelA was found in the mitoplast, the location of the mtDNA. We demonstrate that hypoxia leads to a very rapid but transient accumulation of RelA and IκBα in mitochondria. This effect required reactive oxygen species (ROS) but was not dependent on the hypoxia sensing transcription factor subunit HIF1α or intracellular Ca2+ release. We also observed rapid mitochondrial localisation of transcription factor STAT3 following hypoxia. Inhibition of STAT3 blocked RelA and IκBα mitochondrial localisation revealing a previously unknown aspect of crosstalk between these key cellular regulators.


Asunto(s)
Mitocondrias/genética , Inhibidor NF-kappaB alfa/genética , FN-kappa B/genética , Factor de Transcripción STAT3/genética , Factor de Transcripción ReIA/genética , Calcio/metabolismo , Hipoxia de la Célula/genética , ADN Mitocondrial/genética , Retículo Endoplásmico/genética , Células HEK293 , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Células MCF-7 , Mitocondrias/metabolismo , Especies Reactivas de Oxígeno/metabolismo
14.
BMC Microbiol ; 19(1): 68, 2019 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-30922226

RESUMEN

BACKGROUND: Thermal regulation of gene expression occurs in many microorganisms, and is mediated via several typical mechanisms. Yersinia pestis is the causative agent of the plague and spreads by zoonotic transfer from fleas to mammalian blood with a concomitant rapid temperature change, from ambient to 37 °C, which induces the expression of capsular antigen (Caf1) that inhibits phagocytosis. Caf1 is formed into long polymeric fimbriae by a periplasmic chaperone (Caf1M) and outer membrane usher (Caf1A). All three are encoded on an operon regulated by an AraC-type transcription factor Caf1R. The aim of this study was to determine the role of Caf1R in the thermal control of caf1 operon gene expression. RESULTS: PCR analysis of cDNA demonstrated that the genes of the operon are transcribed as a single polycistronic mRNA. Bioinformatic analysis, supported by deletion mutagenesis, then revealed a region containing the promoter of this polycistronic transcript that was critical for Caf1 protein expression. Caf1R was found to be essential for Caf1 protein production. Finally, RT-PCR analysis and western blot experiments showed large, Caf1R dependent increases in caf1 operon transcripts upon a shift in temperature from 25 °C to 35 °C. CONCLUSIONS: The results show that thermal control of Caf1 polymer production is established at the transcriptional level, in a Caf1R dependent manner. This gives us new insights into how a virulent pathogen evades destruction by the immune system by detecting and responding to environmental changes.


Asunto(s)
Antígenos Bacterianos/genética , Proteínas Bacterianas/genética , Temperatura , Factores de Transcripción/genética , Yersinia pestis/genética , Regulación Bacteriana de la Expresión Génica , Evasión Inmune , Operón
16.
BMC Genomics ; 19(1): 813, 2018 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-30419821

RESUMEN

BACKGROUND: The cellular response to ionizing radiation involves activation of p53-dependent pathways and activation of the atypical NF-κB pathway. The crosstalk between these two transcriptional networks include (co)regulation of common gene targets. Here we looked for novel genes potentially (co)regulated by p53 and NF-κB using integrative genomics screening in human osteosarcoma U2-OS cells irradiated with a high dose (4 and 10 Gy). Radiation-induced expression in cells with silenced TP53 or RELA (coding the p65 NF-κB subunit) genes was analyzed by RNA-Seq while radiation-enhanced binding of p53 and RelA in putative regulatory regions was analyzed by ChIP-Seq, then selected candidates were validated by qPCR. RESULTS: We identified a subset of radiation-modulated genes whose expression was affected by silencing of both TP53 and RELA, and a subset of radiation-upregulated genes where radiation stimulated binding of both p53 and RelA. For three genes, namely IL4I1, SERPINE1, and CDKN1A, an antagonistic effect of the TP53 and RELA silencing was consistent with radiation-enhanced binding of both p53 and RelA. This suggested the possibility of a direct antagonistic (co)regulation by both factors: activation by NF-κB and inhibition by p53 of IL4I1, and activation by p53 and inhibition by NF-κB of CDKN1A and SERPINE1. On the other hand, radiation-enhanced binding of both p53 and RelA was observed in a putative regulatory region of the RRAD gene whose expression was downregulated both by TP53 and RELA silencing, which suggested a possibility of direct (co)activation by both factors. CONCLUSIONS: Four new candidates for genes directly co-regulated by NF-κB and p53 were revealed.


Asunto(s)
Biomarcadores de Tumor/genética , Neoplasias Óseas/genética , Regulación Neoplásica de la Expresión Génica , Osteosarcoma/genética , Radiación Ionizante , Sitios de Unión , Biomarcadores de Tumor/metabolismo , Neoplasias Óseas/patología , Neoplasias Óseas/radioterapia , Cromatina/genética , Cromatina/metabolismo , Inmunoprecipitación de Cromatina , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Perfilación de la Expresión Génica , Redes Reguladoras de Genes , Genoma Humano , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , L-Aminoácido Oxidasa/genética , L-Aminoácido Oxidasa/metabolismo , FN-kappa B/genética , FN-kappa B/metabolismo , Osteosarcoma/patología , Osteosarcoma/radioterapia , Inhibidor 1 de Activador Plasminogénico/genética , Inhibidor 1 de Activador Plasminogénico/metabolismo , Activación Transcripcional , Células Tumorales Cultivadas , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Proteínas ras/genética , Proteínas ras/metabolismo
17.
Cell Signal ; 46: 23-31, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29476964

RESUMEN

The NF-κB transcription factors are activated via diverse molecular mechanisms in response to various types of stimuli. A plethora of functions associated with specific sets of target genes could be regulated differentially by this factor, affecting cellular response to stress including an anticancer treatment. Here we aimed to compare subsets of NF-κB-dependent genes induced in cells stimulated with a pro-inflammatory cytokine and in cells damaged by a high dose of ionizing radiation (4 and 10 Gy). The RelA-containing NF-κB species were activated by the canonical TNFα-induced and the atypical radiation-induced pathways in human osteosarcoma cells. NF-κB-dependent genes were identified using the gene expression profiling (by RNA-Seq) in cells with downregulated RELA combined with the global profiling of RelA binding sites (by ChIP-Seq), with subsequent validation of selected candidates by quantitative PCR. There were 37 NF-κB-dependent protein-coding genes identified: in all cases RelA bound in their regulatory regions upon activation while downregulation of RELA suppressed their stimulus-induced upregulation, which apparently indicated the positive regulation mode. This set of genes included a few "novel" NF-κB-dependent species. Moreover, the evidence for possible negative regulation of ATF3 gene by NF-κB was collected. The kinetics of the NF-κB activation was slower in cells exposed to radiation than in cytokine-stimulated ones. However, subsets of NF-κB-dependent genes upregulated by both types of stimuli were essentially the same. Hence, one should expect that similar cellular processes resulting from activation of the NF-κB pathway could be induced in cells responding to pro-inflammatory cytokines and in cells where so-called "sterile inflammation" response was initiated by radiation-induced damage.


Asunto(s)
Neoplasias Óseas/genética , Regulación Neoplásica de la Expresión Génica , FN-kappa B/metabolismo , Osteosarcoma/genética , Factor de Necrosis Tumoral alfa/farmacología , Factor de Transcripción Activador 3/genética , Sitios de Unión , Línea Celular Tumoral , Relación Dosis-Respuesta en la Radiación , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de la radiación , Humanos , Radiación Ionizante , Secuencias Reguladoras de Ácidos Nucleicos , Análisis de Secuencia de ARN , Factor de Transcripción ReIA/metabolismo
18.
Br J Cancer ; 114(1): 1-6, 2016 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-26757421

RESUMEN

When the genes encoding NF-κB subunits were first isolated, their homology to the previously identified c-Rel proto-oncogene and its viral homologue v-Rel was clear. This provided the first indication that these transcription factors also had a role in cancer. Because of its homology to v-Rel, which transforms chicken B cells together with the important role c-Rel can have as a regulator of B- and T-cell proliferation, most attention has focussed on its role in B-cell lymphomas, where the REL gene is frequently amplified. However, a growing number of reports now indicate that c-Rel has important functions in many solid tumours, although studies in mice suggest it may not always function as an oncogene. Moreover, c-Rel is a critical regulator of fibrosis, which provides an environment for tumour development in many settings. Overall, c-Rel is emerging as a complex regulator of tumorigenesis, and there is still much to learn about its functions in human malignancies and the response to cancer therapies.


Asunto(s)
Neoplasias/etiología , Proteínas Proto-Oncogénicas c-rel/fisiología , Animales , Fibrosis , Genes p53/fisiología , Genes rel/fisiología , Humanos , Linfoma de Células B/etiología , Ratones , Neoplasias/terapia , Proto-Oncogenes Mas , Proteínas Proto-Oncogénicas c-rel/química
19.
FEBS J ; 283(10): 1812-22, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-26663363

RESUMEN

The pleiotropic consequences of nuclear factor of kappa light polypeptide gene enhancer in B-cells (NF-κB) pathway activation result from the combinatorial effects of the five subunits that form the homo- and heterodimeric NF-κB complexes. Although biochemical and gene knockout studies have demonstrated overlapping and distinct functions for these proteins, much is still not known about the mechanisms determining context-dependent functions, the formation of different dimer complexes and transcriptional control in response to diverse stimuli. Here we discuss recent results that reveal that the nuclear factor of kappa light polypeptide gene enhancer in B-cells 1 (NFKB1) (p105/p50) subunit is an important regulator of NF-κB activity in vivo. These effects are not restricted to being a dimer partner for other NF-κB subunits. Rather p50 homodimers have a critical role as suppressors of the NF-κB response, while the p105 precursor has a variety of NF-κB-independent functions. The importance of Nfkb1 function can be seen in mouse models, where Nfkb1(-/-) mice display increased inflammation and susceptibility to certain forms of DNA damage, leading to cancer, and a rapid ageing phenotype. In humans, low expression of Kip1 ubiquitination-promoting complex 1 (KPC1), a ubiquitin ligase required for p105 to p50 processing, was shown to correlate with a reduction in p50 and glioblastoma incidence. Therefore, while the majority of research in this field has focused on the upstream signalling pathways leading to NF-κB activation or the function of other NF-κB subunits, such as RelA (p65), these data demonstrate a critical role for NFKB1, potentially revealing new strategies for targeting this pathway in inflammatory diseases and cancer.


Asunto(s)
Envejecimiento/fisiología , Inflamación/fisiopatología , Subunidad p50 de NF-kappa B/fisiología , Neoplasias/fisiopatología , Animales , Dimerización , Humanos , Sistema Inmunológico/fisiología , Ratones , Ratones Noqueados , Subunidad p50 de NF-kappa B/química , Subunidad p50 de NF-kappa B/genética
20.
Oncotarget ; 7(3): 2329-42, 2016 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-26295308

RESUMEN

CCT245737 is the first orally active, clinical development candidate CHK1 inhibitor to be described. The IC50 was 1.4 nM against CHK1 enzyme and it exhibited>1,000-fold selectivity against CHK2 and CDK1. CCT245737 potently inhibited cellular CHK1 activity (IC50 30-220 nM) and enhanced gemcitabine and SN38 cytotoxicity in multiple human tumor cell lines and human tumor xenograft models. Mouse oral bioavailability was complete (100%) with extensive tumor exposure. Genotoxic-induced CHK1 activity (pS296 CHK1) and cell cycle arrest (pY15 CDK1) were inhibited both in vitro and in human tumor xenografts by CCT245737, causing increased DNA damage and apoptosis. Uniquely, we show CCT245737 enhanced gemcitabine antitumor activity to a greater degree than for higher doses of either agent alone, without increasing toxicity, indicating a true therapeutic advantage for this combination. Furthermore, development of a novel ELISA assay for pS296 CHK1 autophosphorylation, allowed the quantitative measurement of target inhibition in a RAS mutant human tumor xenograft of NSCLC at efficacious doses of CCT245737. Finally, CCT245737 also showed significant single-agent activity against a MYC-driven mouse model of B-cell lymphoma. In conclusion, CCT245737 is a new CHK1 inhibitor clinical development candidate scheduled for a first in man Phase I clinical trial, that will use the novel pS296 CHK1 ELISA to monitor target inhibition.


Asunto(s)
4-Aminopiridina/análogos & derivados , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/efectos de los fármacos , Neoplasias Pulmonares/tratamiento farmacológico , Linfoma de Células B/tratamiento farmacológico , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Proto-Oncogénicas p21(ras)/genética , Pirazinas/farmacología , Ensayos Antitumor por Modelo de Xenoinjerto , 4-Aminopiridina/farmacocinética , 4-Aminopiridina/farmacología , Animales , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Apoptosis/efectos de los fármacos , Proteína Quinasa CDC2 , Camptotecina/análogos & derivados , Camptotecina/farmacología , Puntos de Control del Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/metabolismo , Quinasa de Punto de Control 2/antagonistas & inhibidores , Quinasas Ciclina-Dependientes/antagonistas & inhibidores , Daño del ADN/efectos de los fármacos , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacología , Sinergismo Farmacológico , Células HT29 , Humanos , Irinotecán , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Ratones Transgénicos , Pirazinas/farmacocinética , Gemcitabina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA