Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nature ; 627(8005): 865-872, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38509377

RESUMEN

Disease-associated astrocyte subsets contribute to the pathology of neurologic diseases, including multiple sclerosis and experimental autoimmune encephalomyelitis1-8 (EAE), an experimental model for multiple sclerosis. However, little is known about the stability of these astrocyte subsets and their ability to integrate past stimulation events. Here we report the identification of an epigenetically controlled memory astrocyte subset that exhibits exacerbated pro-inflammatory responses upon rechallenge. Specifically, using a combination of single-cell RNA sequencing, assay for transposase-accessible chromatin with sequencing, chromatin immunoprecipitation with sequencing, focused interrogation of cells by nucleic acid detection and sequencing, and cell-specific in vivo CRISPR-Cas9-based genetic perturbation studies we established that astrocyte memory is controlled by the metabolic enzyme ATP-citrate lyase (ACLY), which produces acetyl coenzyme A (acetyl-CoA) that is used by histone acetyltransferase p300 to control chromatin accessibility. The number of ACLY+p300+ memory astrocytes is increased in acute and chronic EAE models, and their genetic inactivation ameliorated EAE. We also detected the pro-inflammatory memory phenotype in human astrocytes in vitro; single-cell RNA sequencing and immunohistochemistry studies detected increased numbers of ACLY+p300+ astrocytes in chronic multiple sclerosis lesions. In summary, these studies define an epigenetically controlled memory astrocyte subset that promotes CNS pathology in EAE and, potentially, multiple sclerosis. These findings may guide novel therapeutic approaches for multiple sclerosis and other neurologic diseases.


Asunto(s)
Astrocitos , Encefalomielitis Autoinmune Experimental , Memoria Epigenética , Esclerosis Múltiple , Animales , Femenino , Humanos , Masculino , Ratones , Acetilcoenzima A/metabolismo , Astrocitos/enzimología , Astrocitos/metabolismo , Astrocitos/patología , ATP Citrato (pro-S)-Liasa/metabolismo , Cromatina/genética , Cromatina/metabolismo , Ensamble y Desensamble de Cromatina , Secuenciación de Inmunoprecipitación de Cromatina , Sistemas CRISPR-Cas , Encefalomielitis Autoinmune Experimental/enzimología , Encefalomielitis Autoinmune Experimental/genética , Encefalomielitis Autoinmune Experimental/metabolismo , Encefalomielitis Autoinmune Experimental/patología , Inflamación/enzimología , Inflamación/genética , Inflamación/metabolismo , Inflamación/patología , Esclerosis Múltiple/enzimología , Esclerosis Múltiple/genética , Esclerosis Múltiple/metabolismo , Esclerosis Múltiple/patología , Análisis de Expresión Génica de una Sola Célula , Transposasas/metabolismo
2.
Nat Commun ; 15(1): 1524, 2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38374028

RESUMEN

Oligodendrocyte (OL) injury and subsequent loss is a pathologic hallmark of multiple sclerosis (MS). Stress granules (SGs) are membrane-less organelles containing mRNAs stalled in translation and considered as participants of the cellular response to stress. Here we show SGs in OLs in active and inactive areas of MS lesions as well as in normal-appearing white matter. In cultures of primary human adult brain derived OLs, metabolic stress conditions induce transient SG formation in these cells. Combining pro-inflammatory cytokines, which alone do not induce SG formation, with metabolic stress results in persistence of SGs. Unlike sodium arsenite, metabolic stress induced SG formation is not blocked by the integrated stress response inhibitor. Glycolytic inhibition also induces persistent SGs indicating the dependence of SG formation and disassembly on the energetic glycolytic properties of human OLs. We conclude that SG persistence in OLs in MS reflects their response to a combination of metabolic stress and pro-inflammatory conditions.


Asunto(s)
Gránulos Citoplasmáticos , Esclerosis Múltiple , Humanos , Gránulos Citoplasmáticos/metabolismo , Gránulos de Estrés , Oligodendroglía , Citocinas/metabolismo , Estrés Fisiológico , Esclerosis Múltiple/metabolismo
3.
bioRxiv ; 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-38260616

RESUMEN

Astrocytes play important roles in the central nervous system (CNS) physiology and pathology. Indeed, astrocyte subsets defined by specific transcriptional activation states contribute to the pathology of neurologic diseases, including multiple sclerosis (MS) and its pre-clinical model experimental autoimmune encephalomyelitis (EAE) 1-8 . However, little is known about the stability of these disease-associated astrocyte subsets, their regulation, and whether they integrate past stimulation events to respond to subsequent challenges. Here, we describe the identification of an epigenetically controlled memory astrocyte subset which exhibits exacerbated pro-inflammatory responses upon re-challenge. Specifically, using a combination of single-cell RNA sequencing (scRNA-seq), assay for transposase-accessible chromatin with sequencing (ATAC-seq), chromatin immunoprecipitation with sequencing (ChIP-seq), focused interrogation of cells by nucleic acid detection and sequencing (FIND-seq), and cell-specific in vivo CRISPR/Cas9-based genetic perturbation studies we established that astrocyte memory is controlled by the metabolic enzyme ATP citrate lyase (ACLY), which produces acetyl coenzyme A (acetyl-CoA) used by the histone acetyltransferase p300 to control chromatin accessibility. ACLY + p300 + memory astrocytes are increased in acute and chronic EAE models; the genetic targeting of ACLY + p300 + astrocytes using CRISPR/Cas9 ameliorated EAE. We also detected responses consistent with a pro-inflammatory memory phenotype in human astrocytes in vitro ; scRNA-seq and immunohistochemistry studies detected increased ACLY + p300 + astrocytes in chronic MS lesions. In summary, these studies define an epigenetically controlled memory astrocyte subset that promotes CNS pathology in EAE and, potentially, MS. These findings may guide novel therapeutic approaches for MS and other neurologic diseases.

4.
Brain ; 147(1): 147-162, 2024 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-37640028

RESUMEN

Multiple sclerosis is a chronic neuroinflammatory disorder characterized by demyelination, oligodendrocyte damage/loss and neuroaxonal injury in the context of immune cell infiltration in the CNS. No neuroprotective therapy is available to promote the survival of oligodendrocytes and protect their myelin processes in immune-mediated demyelinating diseases. Pro-inflammatory CD4 Th17 cells can interact with oligodendrocytes in multiple sclerosis and its animal model, causing injury to myelinating processes and cell death through direct contact. However, the molecular mechanisms underlying the close contact and subsequent detrimental interaction of Th17 cells with oligodendrocytes remain unclear. In this study we used single cell RNA sequencing, flow cytometry and immunofluorescence studies on CNS tissue from multiple sclerosis subjects, its animal model and controls to characterize the expression of cell adhesion molecules by mature oligodendrocytes. We found that a significant proportion of human and murine mature oligodendrocytes express melanoma cell adhesion molecule (MCAM) and activated leukocyte cell adhesion molecule (ALCAM) in multiple sclerosis, in experimental autoimmune encephalomyelitis and in controls, although their regulation differs between human and mouse. We observed that exposure to pro-inflammatory cytokines or to human activated T cells are associated with a marked downregulation of the expression of MCAM but not of ALCAM at the surface of human primary oligodendrocytes. Furthermore, we used in vitro live imaging, immunofluorescence and flow cytometry to determine the contribution of these molecules to Th17-polarized cell adhesion and cytotoxicity towards human oligodendrocytes. Silencing and blocking ALCAM but not MCAM limited prolonged interactions between human primary oligodendrocytes and Th17-polarized cells, resulting in decreased adhesion of Th17-polarized cells to oligodendrocytes and conferring significant protection of oligodendrocytic processes. In conclusion, we showed that human oligodendrocytes express MCAM and ALCAM, which are differently modulated by inflammation and T cell contact. We found that ALCAM is a ligand for Th17-polarized cells, contributing to their capacity to adhere and induce damage to human oligodendrocytes, and therefore could represent a relevant target for neuroprotection in multiple sclerosis.


Asunto(s)
Encefalomielitis Autoinmune Experimental , Esclerosis Múltiple , Humanos , Ratones , Animales , Linfocitos T CD4-Positivos/metabolismo , Molécula de Adhesión Celular del Leucocito Activado/metabolismo , Adhesión Celular , Oligodendroglía/metabolismo
5.
Acta Neuropathol Commun ; 11(1): 108, 2023 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-37408029

RESUMEN

Oligodendrocyte (OL) injury and loss are central features of evolving lesions in multiple sclerosis. Potential causative mechanisms of OL loss include metabolic stress within the lesion microenvironment. Here we use the injury response of primary human OLs (hOLs) to metabolic stress (reduced glucose/nutrients) in vitro to help define the basis for the in situ features of OLs in cases of MS. Under metabolic stress in vitro, we detected reduction in ATP levels per cell that precede changes in survival. Autophagy was initially activated, although ATP levels were not altered by inhibitors (chloroquine) or activators (Torin-1). Prolonged stress resulted in autophagy failure, documented by non-fusion of autophagosomes and lysosomes. Consistent with our in vitro results, we detected higher expression of LC3, a marker of autophagosomes in OLs, in MS lesions compared to controls. Both in vitro and in situ, we observe a reduction in nuclear size of remaining OLs. Prolonged stress resulted in increased ROS and cleavage of spectrin, a target of Ca2+-dependent proteases. Cell death was however not prevented by inhibitors of ferroptosis or MPT-driven necrosis, the regulated cell death (RCD) pathways most likely to be activated by metabolic stress. hOLs have decreased expression of VDAC1, VDAC2, and of genes regulating iron accumulation and cyclophilin. RNA sequencing analyses did not identify activation of these RCD pathways in vitro or in MS cases. We conclude that this distinct response of hOLs, including resistance to RCD, reflects the combined impact of autophagy failure, increased ROS, and calcium influx, resulting in metabolic collapse and degeneration of cellular structural integrity. Defining the basis of OL injury and death provides guidance for development of neuro-protective strategies.


Asunto(s)
Esclerosis Múltiple Crónica Progresiva , Esclerosis Múltiple , Humanos , Esclerosis Múltiple/patología , Especies Reactivas de Oxígeno/metabolismo , Oligodendroglía/patología , Muerte Celular , Esclerosis Múltiple Crónica Progresiva/patología , Adenosina Trifosfato/metabolismo
6.
Front Immunol ; 13: 850616, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35479072

RESUMEN

Multiple sclerosis (MS) is characterized by the loss of myelin and of myelin-producing oligodendrocytes (OLs) in the central nervous system (CNS). Pro-inflammatory CD4+ Th17 cells are considered pathogenic in MS and are harmful to OLs. We investigated the mechanisms driving human CD4+ T cell-mediated OL cell death. Using fluorescent and brightfield in vitro live imaging, we found that compared to Th2-polarized cells, Th17-polarized cells show greater interactions with primary human OLs and human oligodendrocytic cell line MO3.13, displaying longer duration of contact, lower mean speed, and higher rate of vesicle-like structure formation at the sites of contact. Using single-cell RNA sequencing, we assessed the transcriptomic profile of primary human OLs and Th17-polarized cells in direct contact or separated by an insert. We showed that upon close interaction, OLs upregulate the expression of mRNA coding for chemokines and antioxidant/anti-apoptotic molecules, while Th17-polarized cells upregulate the expression of mRNA coding for chemokines and pro-inflammatory cytokines such as IL-17A, IFN-γ, and granzyme B. We found that secretion of CCL3, CXCL10, IFN-γ, TNFα, and granzyme B is induced upon direct contact in cocultures of human Th17-polarized cells with human OLs. In addition, we validated by flow cytometry and immunofluorescence that granzyme B levels are upregulated in Th17-polarized compared to Th2-polarized cells and are even higher in Th17-polarized cells upon direct contact with OLs or MO3.13 cells compared to Th17-polarized cells separated from OLs by an insert. Moreover, granzyme B is detected in OLs and MO3.13 cells following direct contact with Th17-polarized cells, suggesting the release of granzyme B from Th17-polarized cells into OLs/MO3.13 cells. To confirm granzyme B-mediated cytotoxicity toward OLs, we showed that recombinant human granzyme B can induce OLs and MO3.13 cell death. Furthermore, pretreatment of Th17-polarized cells with a reversible granzyme B blocker (Ac-IEPD-CHO) or a natural granzyme B blocker (serpina3N) improved survival of MO3.13 cells upon coculture with Th17 cells. In conclusion, we showed that human Th17-polarized cells form biologically significant contacts with human OLs and exert direct toxicity by releasing granzyme B.


Asunto(s)
Esclerosis Múltiple , Células Th17 , Granzimas/metabolismo , Humanos , Interferón gamma/metabolismo , Esclerosis Múltiple/metabolismo , Oligodendroglía , ARN Mensajero/metabolismo , Células Th17/metabolismo
7.
Brain ; 145(12): 4320-4333, 2022 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-35202462

RESUMEN

Early multiple sclerosis lesions feature relative preservation of oligodendrocyte cell bodies with dying back retraction of their myelinating processes. Cell loss occurs with disease progression. Putative injury mediators include metabolic stress (low glucose/nutrient), pro-inflammatory mediators (interferon γ and tumour necrosis factor α), and excitotoxins (glutamate). Our objective was to compare the impact of these disease relevant mediators on the injury responses of human mature oligodendrocytes. In the current study, we determined the effects of these mediators on process extension and survival of human brain derived mature oligodendrocytes in vitro and used bulk RNA sequencing to identify distinct effector mechanisms that underlie the responses. All mediators induced significant process retraction of the oligodendrocytes in dissociated cell culture. Only metabolic stress (low glucose/nutrient) conditions resulted in delayed (4-6 days) non-apoptotic cell death. Metabolic effects were associated with induction of the integrated stress response, which can be protective or contribute to cell injury dependent on its level and duration of activation. Addition of Sephin1, an agonist of the integrated stress response induced process retraction under control conditions and further enhanced retraction under metabolic stress conditions. The antagonist ISRIB restored process outgrowth under stress conditions, and if added to already stressed cells, reduced delayed cell death and prolonged the period in which recovery could occur. Inflammatory cytokine functional effects were associated with activation of multiple signalling pathways (including Jak/Stat-1) that regulate process outgrowth, without integrated stress response induction. Glutamate application produced limited transcriptional changes suggesting a contribution of effects directly on cell processes. Our comparative studies indicate the need to consider both the specific injury mediators and the distinct cellular mechanisms of responses to them by human oligodendrocytes to identify effective neuroprotective therapies for multiple sclerosis.


Asunto(s)
Esclerosis Múltiple , Humanos , Esclerosis Múltiple/patología , Oligodendroglía/metabolismo , Encéfalo/patología , Muerte Celular , Glucosa/metabolismo , Células Cultivadas
9.
Artículo en Inglés | MEDLINE | ID: mdl-32217641

RESUMEN

OBJECTIVE: To determine whether there are nuclear depletion and cellular mislocalization of RNA-binding proteins (RBPs) transactivation response DNA-binding protein of 43 kDa (TDP-43), fused in sarcoma (FUS), and polypyrimidine tract-binding protein (PTB) in MS, as is the case in amyotrophic lateral sclerosis (ALS) and oligodendrocytes infected with Theiler murine encephalomyelitis virus (TMEV), we examined MS lesions and in vitro cultured primary human brain-derived oligodendrocytes. METHODS: Nuclear depletion and mislocalization of TDP-43, FUS, and PTB are thought to contribute to the pathogenesis of ALS and TMEV demyelination. The latter findings prompted us to investigate these RBPs in the demyelinated lesions of MS and in in vitro cultured human brain-derived oligodendrocytes under metabolic stress conditions. RESULTS: We found (1) mislocalized TDP-43 in oligodendrocytes in active lesions in some patients with MS; (2) decreased PTB1 expression in oligodendrocytes in mixed active/inactive demyelinating lesions; (3) decreased nuclear expression of PTB2 in neurons in cortical demyelinating lesions; and (4) nuclear depletion of TDP-43 in oligodendrocytes under metabolic stress induced by low glucose/low nutrient conditions compared with optimal culture conditions. CONCLUSION: TDP-43 has been found to have a key role in oligodendrocyte function and viability, whereas PTB is important in neuronal differentiation, suggesting that altered expression and mislocalization of these RBPs in MS lesions may contribute to the pathogenesis of demyelination and neurodegeneration. Our findings also identify nucleocytoplasmic transport as a target for treatment.


Asunto(s)
Transporte Activo de Núcleo Celular , Proteínas de Unión al ADN/metabolismo , Esclerosis Múltiple/metabolismo , Esclerosis Múltiple/patología , Oligodendroglía/metabolismo , Proteína de Unión al Tracto de Polipirimidina/metabolismo , Proteína FUS de Unión a ARN/metabolismo , Estrés Fisiológico , Adulto , Células Cultivadas , Niño , Femenino , Humanos , Masculino , Persona de Mediana Edad
10.
Glia ; 68(6): 1291-1303, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-31958186

RESUMEN

Characterizing the developmental trajectory of oligodendrocyte progenitor cells (OPC) is of great interest given the importance of these cells in the remyelination process. However, studies of human OPC development remain limited by the availability of whole cell samples and material that encompasses a wide age range, including time of peak myelination. In this study, we apply single cell RNA sequencing to viable whole cells across the age span and link transcriptomic signatures of oligodendrocyte-lineage cells with stage-specific functional properties. Cells were isolated from surgical tissue samples of second-trimester fetal, 2-year-old pediatric, 13-year-old adolescent, and adult donors by mechanical and enzymatic digestion, followed by percoll gradient centrifugation. Gene expression was analyzed using droplet-based RNA sequencing (10X Chromium). Louvain clustering analysis identified three distinct cellular subpopulations based on 5,613 genes, comprised of an early OPC (e-OPC) group, a late OPC group (l-OPC), and a mature OL (MOL) group. Gene ontology terms enriched for e-OPCs included cell cycle and development, for l-OPCs included extracellular matrix and cell adhesion, and for MOLs included myelination and cytoskeleton. The e-OPCs were mostly confined to the premyelinating fetal group, and the l-OPCs were most highly represented in the pediatric age group, corresponding to the peak age of myelination. Cells expressing a signature characteristic of l-OPCs were identified in the adult brain in situ using RNAScope. These findings highlight the transcriptomic variability in OL-lineage cells before, during, and after peak myelination and contribute to identifying novel pathways required to achieve remyelination.


Asunto(s)
Diferenciación Celular/fisiología , Células Precursoras de Oligodendrocitos/citología , Oligodendroglía/citología , Células Madre/citología , Adolescente , Encéfalo/diagnóstico por imagen , Encéfalo/crecimiento & desarrollo , Células Cultivadas , Humanos , Vaina de Mielina/clasificación , Vaina de Mielina/metabolismo , Oligodendroglía/metabolismo , Análisis de Secuencia de ARN/métodos , Células Madre/metabolismo
11.
J Neuropathol Exp Neurol ; 78(6): 468-479, 2019 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-31058285

RESUMEN

Remyelination in the human CNS is ascribed to progenitor cells rather than previously myelinating oligodendrocytes (OLs). The ganglioside-recognizing antibody A2B5 has been used to isolate putative progenitor cells, whose in vitro features resemble cells labeled as "pre-oligodendrocytes." Here, we compare the transcriptional profiles of adult human brain-derived A2B5 antibody-selected cells (A+) after initial isolation (day in vitro (DIV1)) and after DIV6, with nonselected (A-) cells (mature OLs), with regard to their differentiation state and functional properties. While a number of previously recognized progenitor associated genes, specifically PTPRZ1 and PDGFRα, were upregulated in the A2B5+ population, a number of such genes were comparably expressed in the mature OLs, as were mature myelin genes. Additional progenitor-related genes were upregulated in the A+ population. We show that A2B5+ cells have greater capacity to ensheath nanofibers, a model of myelination potential; consistent with this, ingenuity pathway analysis indicated that A+ cells had upregulated expression of genes within cell growth and cell signaling pathways. Differential expression of cell death/survival pathways complements previous functional studies showing their increased susceptibility to metabolic stress. At DIV6, we observed significantly fewer differentially expressed genes; suggestive of cell maturation occurring in vitro, indicating the complexity in comparing in vitro and in situ cell properties.


Asunto(s)
Gangliósidos/metabolismo , Células Precursoras de Oligodendrocitos/metabolismo , Oligodendroglía/metabolismo , Muerte Celular , Diferenciación Celular , Linaje de la Célula/genética , Células Cultivadas , Regulación de la Expresión Génica , Humanos , Inmunohistoquímica , Vaina de Mielina/fisiología , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/genética , Proteínas Tirosina Fosfatasas Clase 5 Similares a Receptores/genética
12.
J Neuroimmunol ; 331: 28-35, 2019 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-29566973

RESUMEN

Remyelination following myelin/oligodendrocyte injury in the central nervous system (CNS) is dependent on oligodendrocyte progenitor cells (OPCs) migrating into lesion sites, differentiating into myelinating oligodendrocytes (OLs), and ensheathing axons. Experimental models indicate that robust OPC-dependent remyelination can occur in the CNS; in contrast, histologic and imaging studies of lesions in the human disease multiple sclerosis (MS) indicate the variable extent of this response, which is particularly limited in more chronic MS lesions. Immune-mediated mechanisms can contribute either positively or negatively to the presence and functional responses of OPCs. This review addresses i) the molecular signature and functional properties of OPCs in the adult human brain; ii) the status (presence and function) of OPCs in MS lesions; iii) experimental models and in vitro data highlighting the contribution of adaptive and innate immune constituents to OPC injury and remyelination; and iv) effects of MS-directed immunotherapies on OPCs, either directly or indirectly via effects on specific immune constituents.


Asunto(s)
Encéfalo/citología , Células Precursoras de Oligodendrocitos/inmunología , Inmunidad Adaptativa , Adulto , Animales , Antígenos de Diferenciación/análisis , Diferenciación Celular , Células Cultivadas , Glucosa/farmacología , Humanos , Inmunidad Innata , Inmunoterapia , Ratones , Esclerosis Múltiple/patología , Esclerosis Múltiple/terapia , Proteínas del Tejido Nervioso/análisis , Neuroinmunomodulación , Células Precursoras de Oligodendrocitos/citología , Células Precursoras de Oligodendrocitos/efectos de los fármacos , Células Precursoras de Oligodendrocitos/fisiología , Oligodendroglía/citología , Ratas , Remielinización/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...