Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
1.
Hum Mol Genet ; 33(9): 818-834, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38641551

RESUMEN

Telomeres are nucleoprotein structures at the end of chromosomes that maintain their integrity. Mutations in genes coding for proteins involved in telomere protection and elongation produce diseases such as dyskeratosis congenita or idiopathic pulmonary fibrosis known as telomeropathies. These diseases are characterized by premature telomere shortening, increased DNA damage and oxidative stress. Genetic diagnosis of telomeropathy patients has identified mutations in the genes TERT and TERC coding for telomerase components but the functional consequences of many of these mutations still have to be experimentally demonstrated. The activity of twelve TERT and five TERC mutants, five of them identified in Spanish patients, has been analyzed. TERT and TERC mutants were expressed in VA-13 human cells that express low telomerase levels and the activity induced was analyzed. The production of reactive oxygen species, DNA oxidation and TRF2 association at telomeres, DNA damage response and cell apoptosis were determined. Most mutations presented decreased telomerase activity, as compared to wild-type TERT and TERC. In addition, the expression of several TERT and TERC mutants induced oxidative stress, DNA oxidation, DNA damage, decreased recruitment of the shelterin component TRF2 to telomeres and increased apoptosis. These observations might indicate that the increase in DNA damage and oxidative stress observed in cells from telomeropathy patients is dependent on their TERT or TERC mutations. Therefore, analysis of the effect of TERT and TERC mutations of unknown function on DNA damage and oxidative stress could be of great utility to determine the possible pathogenicity of these variants.


Asunto(s)
Disqueratosis Congénita , Telomerasa , Humanos , Apoptosis/genética , ADN/metabolismo , Daño del ADN/genética , Disqueratosis Congénita/genética , Disqueratosis Congénita/metabolismo , Disqueratosis Congénita/patología , Mutación , Estrés Oxidativo/genética , ARN/genética , Telomerasa/genética , Telomerasa/metabolismo , Telómero/genética , Telómero/metabolismo
2.
Commun Biol ; 7(1): 353, 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38519773

RESUMEN

Cisplatin-based chemotherapy has associated clinical disadvantages, such as high toxicity and resistance. Thus, the development of new antitumor metallodrugs able to overcome different clinical barriers is a public healthcare priority. Here, we studied the mechanism of action of the isomers trans and cis-[PtI2(isopropylamine)2] (I5 and I6, respectively) against gastrointestinal cancer cells. We demonstrate that I5 and I6 modulate mitochondrial metabolism, decreasing OXPHOS activity and negatively affecting ATP-linked oxygen consumption rate. Consequently, I5 and I6 generated Reactive Oxygen Species (ROS), provoking oxidative damage and eventually the induction of senescence. Thus, herein we propose a loop with three interconnected processes modulated by these iodido agents: (i) mitochondrial dysfunction and metabolic disruptions; (ii) ROS generation and oxidative damage; and (iii) cellular senescence. Functionally, I5 reduces cancer cell clonogenicity and tumor growth in a pancreatic xenograft model without systemic toxicity, highlighting a potential anticancer complex that warrants additional pre-clinical studies.


Asunto(s)
Neoplasias Gastrointestinales , Platino (Metal) , Humanos , Especies Reactivas de Oxígeno/metabolismo , Cisplatino/farmacología , Mitocondrias/metabolismo , Neoplasias Gastrointestinales/metabolismo
3.
Lasers Med Sci ; 38(1): 206, 2023 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-37682379

RESUMEN

Thermal deposition of laser energy in the vaginal epithelium in genitourinary syndrome of menopause (GSM) results in clinical and biological effects, but many cellular and molecular changes indicating cell proliferation or senescence inhibition are unknown. The aim of this study is to evaluate the clinical efficacy of the fractional-pixel-CO2 laser in the possible improvement of GMS signs and symptoms that can be correlated with histological changes or with cellular or molecular indicators of restoration. A detailed prospective study was designed to assess 17 women diagnosed with GSM who were treated intravaginally with two laser sessions. Seven non-treated women diagnosed with GSM were used as controls. Three validated outcome questionnaires for assessment of quality of sexual life and urinary incontinence were performed. Vaginal biopsies were collected before the first laser treatment and 4 months following the second session. Histological status, elastin, collagen, and hyaluronic acid content of the biopsies were also evaluated. Cell proliferation was assessed by Ki67 staining. Telomere length (TL) was measured by qPCR. The results show an improvement of the clinical symptoms of GSM (p < 0.05), vaginal epithelium recovery and enhancement of collagen (p < 0.05), elastic fibers (p < 0.005), and hyaluronic acid (p < 0.0005) content in the lamina propria after fractional-pixel-CO2 laser treatment. The laser treatment induced a significant rise on the TL of vaginal epithelial cells (VECs), and a positive correlation was found between the improvements of the collagen and hyaluronic acid content and TL changes (r = 0.82, p < 0.05; r = 0.38, p < 0.05). The percentage of proliferative Ki67-positive VECs was increased in patients whose vaginal TL lengthened after laser treatment (p < 0.05). In conclusion, the results indicate that laser treatment may induce restoration of the vaginal epithelium which is associated to increased TL and proliferation in the VECs. Performing a TL assay could be a suitable tool to evaluate the efficacy of vaginal laser treatment.


Asunto(s)
Dióxido de Carbono , Ácido Hialurónico , Humanos , Femenino , Antígeno Ki-67/genética , Estudios Prospectivos , Telómero/genética
4.
Haematologica ; 108(10): 2652-2663, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37021532

RESUMEN

Clinical trials have shown that lentiviral-mediated gene therapy can ameliorate bone marrow failure (BMF) in nonconditioned Fanconi anemia (FA) patients resulting from the proliferative advantage of corrected FA hematopoietic stem and progenitor cells (HSPC). However, it is not yet known if gene therapy can revert affected molecular pathways in diseased HSPC. Single-cell RNA sequencing was performed in chimeric populations of corrected and uncorrected HSPC co-existing in the BM of gene therapy-treated FA patients. Our study demonstrates that gene therapy reverts the transcriptional signature of FA HSPC, which then resemble the transcriptional program of healthy donor HSPC. This includes a down-regulated expression of TGF-ß and p21, typically up-regulated in FA HSPC, and upregulation of DNA damage response and telomere maintenance pathways. Our results show for the first time the potential of gene therapy to rescue defects in the HSPC transcriptional program from patients with inherited diseases; in this case, in FA characterized by BMF and cancer predisposition.


Asunto(s)
Anemia de Fanconi , Pancitopenia , Humanos , Anemia de Fanconi/genética , Anemia de Fanconi/terapia , Anemia de Fanconi/metabolismo , Células Madre Hematopoyéticas/metabolismo , Terapia Genética/métodos , Factor de Crecimiento Transformador beta/metabolismo , Regulación hacia Arriba , Pancitopenia/metabolismo , Trastornos de Fallo de la Médula Ósea/metabolismo
5.
Immun Ageing ; 19(1): 38, 2022 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-35996190

RESUMEN

BACKGROUND: Age and comorbidity are the main determinants of COVID-19 outcome. Shorter leukocyte telomere length (TL), a hallmark of biological aging, has been associated with worse COVID-19 outcomes. We sought to determine TL in patients with severe COVID-19 requiring hospitalization to analyze whether clinical outcomes and post-COVID-19 manifestations are associated with shorter TL. RESULTS: We analyzed 251 patients with PCR-confirmed COVID-19, hospitalized in the first months of the pandemics. We determined TL in PBL at admission by quantitative-PCR (qPCR) analysis in patients. A healthy cohort from the same area with a similar age range (n = 169) was used to calculate TL Z-scores. After hospital discharge, 144 COVID-19 survivors were followed-up for persistent COVID-19 manifestations. A second TL determination was performed in a smaller group of 63 patients 1 year later and compared with baseline TL. Hospitalized COVID-19 patients had a decreased baseline age-adjusted TL Z-score compared to the reference group. No differences in Z-scores were observed in patients with different COVID-19 outcomes, classified as WHO ordinal scores. In 144 patients, followed for a median of 8 months, post-COVID manifestations were not associated to differences in TL. Persistence of lung radiographic abnormalities was associated with shorter baseline TL. In patients with a second TL determination, further telomere shortening (TS) was observed in 35% and telomere lengthening in 49%. Patients with further TS had suffered a more severe disease. CONCLUSION: Shorter TL is associated with COVID-19 hospitalization but not with hospital clinical outcomes nor with persistent post-COVID-19 manifestations. Delayed resolution of radiographic lung abnormalities was also associated with shorter TL.

6.
Pharmaceutics ; 14(6)2022 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-35745716

RESUMEN

Lung cancer is one of the main causes of death in developed countries, and non-small cell lung cancer (NSCLC) is the most frequent type (80% of patients). In advanced NSCLC, platinum-based chemotherapy is the frontline palliative treatment, but less than 5% of patients achieve prolonged survival. Immunotherapy has recently been proposed as the standard of care (SoC) as either monotherapy or in combination with chemotherapy for advanced NSCLC. The levels of expression of PD-L1 are the only predictive biomarkers for patient assessment. Although around 30% of patients receiving immunotherapy achieve 5-year survival, a significant number does not benefit from this novel therapeutic approach. Therefore, there is a need for novel strategies to improve clinical outcomes. The expression level of choline kinase α (ChoKα) is increased in a large number of human tumors, including NSCLC tumors, and constitutes an independent prognostic factor for early-stage NSCLC patients. Thus, ChoKα has been postulated as a new target drug in cancer therapy. The combination of cisplatin with novel targeted drugs such as choline kinase inhibitors may improve both the survival rates and the quality of life of NSCLC patients and may serve as the basis for the development of new therapeutic approaches. To that aim, we developed several in vitro and in vivo approaches to assess the antitumor activity of a novel combination regimen using cisplatin and ChoKα inhibitors. Our results suggest that a proper combination of specific inhibitors of the NSCLC prognostic factor ChoKα and platinum-based conventional chemotherapy might constitute a new, efficient treatment approach for NSCLC patients. This novel approach may help reduce the toxicity profile associated with cisplatin since, despite the advances in NSCLC management in recent years, the overall 5-year survival rate is still poor.

7.
Front Med (Lausanne) ; 9: 871898, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35646972

RESUMEN

Cross-analysis of clinical and pollution factors could help calculate the risk of fibrotic interstitial lung disease (ILD) development and progression. The intent of this study is to build a body of knowledge around early detection and diagnosis of lung disease, harnessing new data sets generated for other purposes. We cross-referenced exposure levels to particulate matter 2.5 (PM2.5) with telomere length of a cohort of 280 patients with fibrotic ILD to weigh impact and associations. There was no linear correlation between PM2.5 and telomere length in our data sets, as the value of the correlation coefficient was 0.08. This exploratory study offers additional insights into methodologies for investigating the development and prognosis of pulmonary fibrosis.

8.
Cells ; 11(3)2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-35159320

RESUMEN

Colorectal cancer is the second most common cancer in women, the third in men, and an important cause of cancer-related mortality. Recurrence and the development of chemotherapy resistance are major hindrances for patients' treatment. The presence of cancer stem cells with chemotherapy resistance able to generate proliferating tumor cells contributes to tumor recurrence and resistance. In addition, tumor cells can develop chemoresistance through adaptation mechanisms. In this article, cancer stem cells were isolated from HT29 and SW620 colorectal cancer cell lines. Oxaliplatin resistance was induced by a single drug treatment simulating the usual guidelines of patient treatment. A comparison of these two populations showed similarities since cancer stem cells presented increased oxaliplatin resistance, and resistant cells contained an increased number of cancer stem cells. Cancer stem cells isolated from resistant cells showed increased oxaliplatin resistance. Cell invasion capacity and epithelial-mesenchymal transition were increased both in cancer stem cells and oxaliplatin-resistant cells. mRNA expression analysis showed that both cell types shared a significant proportion of commonly regulated genes. In summary, the data presented indicate that colorectal cancer stem cells and oxaliplatin-resistant cells are highly related cell populations that might have interesting implications in the development of tumor recurrence and resistance to chemotherapy.


Asunto(s)
Neoplasias Colorrectales , Recurrencia Local de Neoplasia , Neoplasias Colorrectales/patología , Resistencia a Antineoplásicos , Femenino , Humanos , Masculino , Células Madre Neoplásicas/patología , Oxaliplatino/farmacología , Oxaliplatino/uso terapéutico
9.
Immun Ageing ; 19(1): 7, 2022 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-35086525

RESUMEN

BACKGROUND: To investigate the role of cell senescence in systemic sclerosis (SSc), we analyzed telomere shortening (TS) in SSc patients and the effect of targeting DNA damage in the bleomycin model of skin fibrosis. RESULTS: Telomere length (TL) in blood leukocytes of 174 SSc patients and 68 healthy controls was measured by Southern blot, and we found shorter age-standardized TL in SSc patients compared to healthy controls. TL was shorter in SSc patients with ILD compared to those without ILD and in anti-topoisomerase I positive compared to anti-centromere positive patients. To analyze the potential role of DNA damage in skin fibrosis, we evaluated the effects of the DNA protective GSE4 peptide in the bleomycin mouse model of scleroderma and the fibrotic response of cultured human dermal fibroblasts. Administration of GSE4-nanoparticles attenuated bleomycin-induced skin fibrosis as measured by Masson's staining of collagen and reduced Acta2 and Ctgf mRNA expression, whereas transduction of dermal fibroblasts with a lentiviral GSE4 expression vector reduced COL1A1, ACTA2 and CTGF gene expression after stimulation with bleomycin or TGF-ß, in parallel to a reduction of the phospho-histone H2A.X marker of DNA damage. CONCLUSIONS: SSc is associated with TS, particularly in patients with lung disease or anti-topoisomerase I antibodies. Administration of GSE4 peptide attenuated experimental skin fibrosis and reduced fibroblast expression of profibrotic factors, supporting a role for oxidative DNA damage in scleroderma.

10.
Front Med (Lausanne) ; 8: 695919, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34395476

RESUMEN

Introduction: Fibrotic interstitial lung diseases (ILDs) are the first indication for lung transplantation (LT). Telomere dysfunction has been associated with poor post-transplant outcomes. The aim of the study was to evaluate the morbi-mortality and quality of life in fibrotic ILDs after lung transplant depending on telomere biology. Methods: Fibrotic ILD patients that underwent lung transplant were allocated to two arms; with or without telomere dysfunction at diagnosis based on the telomere length and telomerase related gene mutations revealed by whole-exome sequencing. Post-transplant evaluation included: (1) short and long-term mortality and complications and (2) quality of life. Results: Fifty-five percent of patients that underwent LT carried rare coding mutations in telomerase-related genes. Patients with telomere shortening more frequently needed extracorporeal circulation and presented a higher rate of early post-transplant hematological complications, longer stay in the intensive care unit (ICU), and a higher number of long-term hospital admissions. However, post-transplant 1-year survival was higher than 80% regardless of telomere dysfunction, with improvement in the quality of life and oxygen therapy withdrawal. Conclusions: Post-transplant morbidity is higher in patients with telomere dysfunction and differs according to elapsed time from transplantation. However, lung transplant improves survival and quality of life and the associated complications are manageable.

11.
Front Immunol ; 12: 660065, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34234775

RESUMEN

Toll-like receptors (TLRs) play a crucial role in the recognition of pathogen-derived components as a first line of defense against infections. It has been suggested that depending on the nature of the pathogens, TLRs activation induce a distinct cytokine profile that may contribute to the polarization of the acquired immune response. Here, we investigated the early MAPK signaling activation via TLR4 and TLR2 receptors and its impact in differential cytokine profile by macrophages. We found that TLR2 ligands activated MAPKs p38 and ERK earlier compared to the TLR4 ligand LPS in macrophages. Higher IL-10/IL-12 and IL-10/TNF-α ratios were also observed at later time points in response to TLR2 ligands compared to LPS. The results also indicate an earlier activation of the phosphatase MKP-1 and that MKP-1 KO macrophages show a prolongation in p38 phosphorylation in response to TLR2 stimulation. Furthermore, p38 is critical for IL-10 expression in response to TLR2 ligands, which triggers the macrophage change to a M2 and regulatory phenotype in contrast to the M1 phenotype induced by TLR4 activation. Therefore, the early TLR2-mediated p38 induction contributes for the high IL-10 production, likely as a virulence strategy to suppress host Th1 response against certain types of pathogens.


Asunto(s)
Fosfatasa 1 de Especificidad Dual/inmunología , Interleucina-10/inmunología , Macrófagos/inmunología , Receptor Toll-Like 2/inmunología , Proteínas Quinasas p38 Activadas por Mitógenos/inmunología , Animales , Células Cultivadas , Citocinas/genética , Citocinas/inmunología , Citocinas/metabolismo , Diglicéridos/farmacología , Fosfatasa 1 de Especificidad Dual/genética , Fosfatasa 1 de Especificidad Dual/metabolismo , Activación Enzimática/inmunología , Expresión Génica/efectos de los fármacos , Expresión Génica/inmunología , Interleucina-10/genética , Interleucina-10/metabolismo , Lipopéptidos/farmacología , Lipopolisacáridos/farmacología , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Oligopéptidos/farmacología , Fosforilación/efectos de los fármacos , Células RAW 264.7 , Receptor Toll-Like 2/genética , Receptor Toll-Like 2/metabolismo , Receptor Toll-Like 4/genética , Receptor Toll-Like 4/inmunología , Receptor Toll-Like 4/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
12.
Hemasphere ; 5(4): e539, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33718801

RESUMEN

Inherited bone marrow failure syndromes (IBMFSs) are a group of congenital rare diseases characterized by bone marrow failure, congenital anomalies, high genetic heterogeneity, and predisposition to cancer. Appropriate treatment and cancer surveillance ideally depend on the identification of the mutated gene. A next-generation sequencing (NGS) panel of genes could be 1 initial genetic screening test to be carried out in a comprehensive study of IBMFSs, allowing molecular detection in affected patients. We designed 2 NGS panels of IBMFS genes: version 1 included 129 genes and version 2 involved 145 genes. The cohort included a total of 204 patients with suspected IBMFSs without molecular diagnosis. Capture-based targeted sequencing covered > 99% of the target regions of 145 genes, with more than 20 independent reads. No differences were seen between the 2 versions of the panel. The NGS tool allowed a total of 91 patients to be diagnosed, with an overall molecular diagnostic rate of 44%. Among the 167 patients with classified IBMFSs, 81 patients (48%) were diagnosed. Unclassified IBMFSs involved a total of 37 patients, of whom 9 patients (24%) were diagnosed. The preexisting diagnosis of 6 clinically classified patients (6%) was amended, implying a change of therapy for some of them. Our NGS IBMFS gene panel assay is a useful tool in the molecular diagnosis of IBMFSs and a reasonable option as the first tier genetic test in these disorders.

13.
Int J Hematol ; 114(1): 116-123, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33772729

RESUMEN

Severe aplastic anemia and congenital amegakaryocytic thrombocytopenia are rare bone marrow failure syndromes. Treatment for aplastic anemia consists of hematopoietic stem cell transplantation (HSCT) from a matched sibling donor or immunosuppressant drugs if there is no donor available. Congenital amegakaryocytic thrombocytopenia is a rare autosomal recessive disease that causes bone marrow failure and has limited treatment options, except for transfusion support and HSCT. In the absence of a suitable matched sibling donor, matched-unrelated, haploidentical, or mismatched donors may be considered. A 2-step partial T-cell-depletion strategy can remove CD45RA+ naïve T cells responsible for graft-versus-host disease (GvHD) while preserving memory T cells. Five patients underwent transplantation using this strategy with rapid neutrophil and platelet recovery. Acute and chronic GvHD ≥ grade 2 appeared in two and one patient, respectively. No severe infections were observed before day + 100. A high (60%) incidence of transplant-associated microangiopathy was observed. Three patients (60%) remain alive, with a median follow-up of 881 (range 323-1248) days. CD45RA-depleted HSCT is a novel approach for patients lacking a suitable matched donor; however, further improvements are needed.


Asunto(s)
Antígenos HLA/inmunología , Trasplante de Células Madre Hematopoyéticas/métodos , Antígenos Comunes de Leucocito/inmunología , Linfocitos T/inmunología , Adolescente , Anemia Aplásica/terapia , Niño , Preescolar , Femenino , Enfermedad Injerto contra Huésped/etiología , Enfermedad Injerto contra Huésped/inmunología , Humanos , Reconstitución Inmune , Depleción Linfocítica , Masculino , Acondicionamiento Pretrasplante/métodos
14.
FASEB J ; 35(3): e21422, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33638895

RESUMEN

Idiopathic pulmonary fibrosis is a lethal lung fibrotic disease, associated with aging with a mean survival of 2-5 years and no curative treatment. The GSE4 peptide is able to rescue cells from senescence, DNA and oxidative damage, inflammation, and induces telomerase activity. Here, we investigated the protective effect of GSE4 expression in vitro in rat alveolar epithelial cells (AECs), and in vivo in a bleomycin model of lung fibrosis. Bleomycin-injured rat AECs, expressing GSE4 or treated with GSE4-PLGA/PEI nanoparticles showed an increase of telomerase activity, decreased DNA damage, and decreased expression of IL6 and cleaved-caspase 3. In addition, these cells showed an inhibition in expression of fibrotic markers induced by TGF-ß such as collagen-I and III among others. Furthermore, treatment with GSE4-PLGA/PEI nanoparticles in a rat model of bleomycin-induced fibrosis, increased telomerase activity and decreased DNA damage in proSP-C cells. Both in preventive and therapeutic protocols GSE4-PLGA/PEI nanoparticles prevented and attenuated lung damage monitored by SPECT-CT and inhibited collagen deposition. Lungs of rats treated with bleomycin and GSE4-PLGA/PEI nanoparticles showed reduced expression of α-SMA and pro-inflammatory cytokines, increased number of pro-SPC-multicellular structures and increased DNA synthesis in proSP-C cells, indicating therapeutic efficacy of GSE4-nanoparticles in experimental lung fibrosis and a possible curative treatment for lung fibrotic patients.


Asunto(s)
Apoptosis/efectos de los fármacos , Bleomicina/farmacología , Daño del ADN/efectos de los fármacos , Pulmón/efectos de los fármacos , Nanopartículas/uso terapéutico , Células Epiteliales Alveolares/efectos de los fármacos , Células Epiteliales Alveolares/metabolismo , Colágeno/efectos de los fármacos , Colágeno/metabolismo , Humanos , Pulmón/metabolismo , Estrés Oxidativo/efectos de los fármacos , Péptidos/farmacología
15.
Stem Cell Res Ther ; 12(1): 92, 2021 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-33514435

RESUMEN

Dyskeratosis congenita (DC) is a rare telomere biology disorder, which results in different clinical manifestations, including severe bone marrow failure. To date, the only curative treatment for the bone marrow failure in DC patients is allogeneic hematopoietic stem cell transplantation. However, due to the toxicity associated to this treatment, improved therapies are recommended for DC patients. Here, we aimed at generating DC-like human hematopoietic stem cells in which the efficacy of innovative therapies could be investigated. Because X-linked DC is the most frequent form of the disease and is associated with an impaired expression of DKC1, we have generated DC-like hematopoietic stem cells based on the stable knock-down of DKC1 in human CD34+ cells with lentiviral vectors encoding for DKC1 short hairpin RNAs. At a molecular level, DKC1-interfered CD34+ cells showed a decreased expression of TERC, as well as a diminished telomerase activity and increased DNA damage, cell senescence, and apoptosis. Moreover, DKC1-interfered human CD34+ cells showed defective clonogenic ability and were incapable of repopulating the hematopoiesis of immunodeficient NSG mice. The development of DC-like hematopoietic stem cells will facilitate the understanding of the molecular and cellular basis of this inherited bone marrow failure syndrome and will serve as a platform to evaluate the efficacy of new hematopoietic therapies for DC.


Asunto(s)
Disqueratosis Congénita , Telomerasa , Animales , Proteínas de Ciclo Celular/genética , Disqueratosis Congénita/genética , Disqueratosis Congénita/terapia , Células Madre Hematopoyéticas/metabolismo , Humanos , Ratones , Mutación , Proteínas Nucleares/genética , Telomerasa/genética , Telomerasa/metabolismo , Telómero/metabolismo
16.
Genes (Basel) ; 11(12)2020 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-33371195

RESUMEN

Telomeres are the protective structures at the ends of linear chromosomes that progressively shorten each time that a cell divides, which is in part caused by the end-replication problem [...].

17.
Oncoimmunology ; 9(1): 1773204, 2020 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-32923132

RESUMEN

The 'cancer cell fusion' theory is controversial due to the lack of methods available to identify hybrid cells and to follow the phenomenon in patients. However, it seems to be one of the best explanations for both the origin and metastasis of primary tumors. Herein, we co-cultured lung cancer stem cells with human monocytes and analyzed the dynamics and properties of tumor-hybrid cells (THC), as well as the molecular mechanisms beneath this fusion process by several techniques: electron-microscopy, karyotyping, CRISPR-Cas9, RNA-seq, immunostaining, signaling blockage, among others. Moreover, mice models were assessed for in vivo characterization of hybrids colonization and invasiveness. Then, the presence of THCs in bloodstream and samples from primary and metastatic lesions were detected by FACS and immunofluorescence protocols, and their correlations with TNM stages established. Our data indicate that the generation of THCs depends on the expression of CD36 on tumor stem cells and the oxidative state and polarization of monocytes, the latter being strongly influenced by microenvironmental fluctuations. Highly oxidized M2-like monocytes show the strongest affinity to fuse with tumor stem cells. THCs are able to proliferate, colonize and invade organs. THC-specific cell surface signature CD36+CD14+PANK+ allows identifying them in matched primary tumor tissues and metastases as well as in bloodstream from patients with lung cancer, thus functioning as a biomarker. THCs levels in circulation correlate with TNM classification. Our results suggest that THCs are involved in both origin and spread of metastatic cells. Furthermore, they might set the bases for future therapies to avoid or eradicate lung cancer metastasis.


Asunto(s)
Neoplasias Pulmonares , Monocitos , Células Madre Neoplásicas , Animales , Fusión Celular , Humanos , Células Híbridas , Ratones
18.
Theranostics ; 10(21): 9601-9618, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32863948

RESUMEN

Rationale: Gastric cancer (GC) is a solid tumor that contains subpopulations of cancer stem cells (CSCs), which are considered drivers of tumor initiation and metastasis; responsible for therapeutic resistance; and promoters of tumor relapse. The balance between symmetric and asymmetric division is crucial for stem cell maintenance. The objective of this study is to evaluate the role of MAD2, a key protein for proper mitotic checkpoint activity, in the tumorigenesis of GC. Methods: Gastric cancer stem cells (GCSCs) were obtained from MKN45, SNU638 and ST2957 cell lines. Pluripotency and stemness markers were evaluated by RT-qPCR and autofluorescence and membrane markers by flow cytometry. Relevant signal transduction pathways were studied by WB. We analysed cell cycle progression, migration and invasion after modulation of MAD2 activity or protein expression levels in these in vitro models. In vivo assays were performed in a nude mouse subcutaneous xenograft model. Results: We found that NANOG, CXCR4 and autofluorescence are common and consistent markers for the GCSCs analysed, with other markers showing more variability. The three main signalling pathways (Wnt/ß-catenin; Hedgehog and Notch) were activated in GCSCs. Downregulation of MAD2 in MKN45CSCs decreased the expression of markers CXCR4, CD133, CD90, LGR5 and VIM, without affecting cell cycle profile or therapy resistance. Moreover, migration, invasion and tumor growth were clearly reduced, and accordingly, we found that metalloprotease expression decreased. These results were accompanied by a reduction in the levels of transcription factors related with epithelial-to-mesenchymal transition. Conclusions: We can conclude that MAD2 is important for GCSCs stemness and its downregulation in MKN45CSCs plays a central role in GC tumorigenesis, likely through CXCR4-SNAI2-MMP1. Thus, its potential use in the clinical setting should be studied as its functions appear to extend beyond mitosis.


Asunto(s)
Carcinogénesis/metabolismo , Proteínas Mad2/metabolismo , Células Madre Neoplásicas/metabolismo , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patología , Animales , Carcinogénesis/patología , Línea Celular , Línea Celular Tumoral , Proliferación Celular/fisiología , Transición Epitelial-Mesenquimal/fisiología , Femenino , Regulación Neoplásica de la Expresión Génica/fisiología , Células HEK293 , Humanos , Ratones , Ratones Desnudos , Recurrencia Local de Neoplasia/metabolismo , Recurrencia Local de Neoplasia/patología , Células Madre Neoplásicas/patología , Transducción de Señal/fisiología
19.
Cells ; 8(11)2019 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-31717312

RESUMEN

Dyskerin is a protein involved in the formation of small nucleolar and small Cajal body ribonucleoproteins. These complexes participate in RNA pseudouridylation and are also components of the telomerase complex required for telomere elongation. Dyskerin mutations cause a rare disease, X-linked dyskeratosis congenita, with no curative treatment. The social amoeba Dictyostelium discoideum contains a gene coding for a dyskerin homologous protein. In this article D. discoideum mutant strains that have mutations corresponding to mutations found in dyskeratosis congenita patients are described. The phenotype of the mutant strains has been studied and no alterations were observed in pseudouridylation activity and telomere structure. Mutant strains showed increased proliferation on liquid culture but reduced growth feeding on bacteria. The results obtained indicated the existence of increased DNA damage response and reactive oxygen species, as also reported in human Dyskeratosis congenita cells and some other disease models. These data, together with the haploid character of D. discoideum vegetative cells, that resemble the genomic structure of the human dyskerin gene, located in the X chromosome, support the conclusion that D. discoideum can be a good model system for the study of this disease.


Asunto(s)
Proteínas de Ciclo Celular/genética , Daño del ADN , Disqueratosis Congénita/genética , Disqueratosis Congénita/metabolismo , Mutación , Proteínas Nucleares/genética , Estrés Oxidativo , Transducción de Señal , Secuencia de Aminoácidos , Animales , Proliferación Celular , Células Cultivadas , Dictyostelium , Regulación de la Expresión Génica , Técnicas de Sustitución del Gen , Humanos , Especies Reactivas de Oxígeno/metabolismo , Telómero
20.
PLoS One ; 14(9): e0222909, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31550289

RESUMEN

Telomeres are nucleo-protein structures that protect the ends of eukaryotic chromosomes. They are not completely synthesized during DNA replication and are elongated by specific mechanisms. The structure of the telomeres and the elongation mechanism have not been determined in Dictyostelium discoideum. This organism presents extrachromosomal palindromic elements containing two copies of the rDNA, also present at the end of the chromosomes. In this article the structure of the terminal region of the rDNA is shown to consist of repetitions of the A(G)n sequence where the number of Gs is variable. These repeats extend as a 3' single stranded region. The G-rich region is preceded by four tandem repetitions of two different DNA motifs. D. discoideum telomere reverse transcriptase homologous protein (TERTHP) presented RNase-sensitive enzymatic activity and was required to maintain telomere structure since terthp-mutant strains presented reorganizations of the DNA terminal regions. These modifications were different in several terthp-mutants and changed with their prolonged culture and subcloning. However, the terthp gene is not essential for D. discoideum proliferation. Telomeres could be maintained in terthp-mutant strains by homologous recombination mechanisms such as ALT (Alternative Lengthening of Telomeres) or HAATI (heterochromatin amplification-mediated and telomerase-independent). In agreement with this hypothesis, the expression of mRNAs coding for several proteins involved in homologous recombination was induced in terthp-mutant strains. Extrachromosomal rDNA could serve as substrate in these DNA homologous recombination reactions.


Asunto(s)
ADN Ribosómico/genética , Dictyostelium/fisiología , Secuencias Repetidas en Tándem/genética , Telomerasa/metabolismo , Telómero/genética , Proliferación Celular/genética , ADN Ribosómico/metabolismo , Heterocromatina/genética , Heterocromatina/metabolismo , Recombinación Homóloga , Mutación , Telomerasa/genética , Telómero/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...