Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 304
Filtrar
1.
Nat Commun ; 15(1): 975, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38316794

RESUMEN

While cardiovascular disease (CVD) is one of the major co-morbidities in patients with rheumatoid arthritis (RA), the mechanism(s) that contribute to CVD in patients with RA remain to be fully elucidated. Herein, we observe that plasma concentrations of 13-series resolvin (RvT)4 negatively correlate with vascular lipid load in mouse inflammatory arthritis. Administration of RvT4 to male arthritic mice fed an atherogenic diet significantly reduces atherosclerosis. Assessment of the mechanisms elicited by this mediator demonstrates that RvT4 activates cholesterol efflux in lipid laden macrophages via a Scavenger Receptor class B type 1 (SR-BI)-Neutral Cholesterol Ester Hydrolase-dependent pathway. This leads to the reprogramming of lipid laden macrophages yielding tissue protection. Pharmacological inhibition or knockdown of macrophage SR-BI reverses the vasculo-protective activities of RvT4 in vitro and in male mice in vivo. Together these findings elucidate a RvT4-SR-BI centered mechanism that orchestrates macrophage responses to limit atherosclerosis during inflammatory arthritis.


Asunto(s)
Artritis , Aterosclerosis , Humanos , Masculino , Ratones , Animales , Colesterol/metabolismo , Macrófagos/metabolismo , Aterosclerosis/metabolismo , Transporte Biológico , Artritis/metabolismo
3.
Pharmacol Res ; 198: 107005, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37992916

RESUMEN

AIMS: The cardio-protective and immuno-regulatory properties of RTP-026, a synthetic peptide that spans the Annexin-A1 (AnxA1) N-terminal region, were tested in rat acute myocardial infarction. METHODS AND RESULTS: In vitro, selective activation of formyl-peptide receptor type 2 (FPR2) by RTP-026 occurred with apparent EC50 in the 10-30 nM range. With human primary cells, RTP-026 counteracted extension of neutrophil life-span and augmented phagocytosis of fluorescent E.coli by blood myeloid cells. An in vivo model of rat acute infarction was used to quantify tissue injury and phenotype immune cells in myocardium and blood. The rat left anterior descending coronary artery was occluded and then reopened for 2-hour or 24-hour reperfusion. For the 2-hour reperfusion protocol, RTP-026 (25-500 µg/kg; given i.v. at the start of reperfusion) significantly reduced infarct size by ∼50 %, with maximal efficacy at 50 µg/kg. Analyses of cardiac immune cells showed that RTP-026 reduced neutrophil and classical monocyte recruitment to the damaged heart. In the blood, RTP-026 (50 µg/kg) attenuated activation of neutrophils and monocytes monitored through CD62L and CD54 expression. Modulation of vascular inflammation by RTP-026 was demonstrated by reduction in plasma levels of mediators like TNF-α, IL-1ß, KC, PGE2 and PGF2α⊡ For the 24-hour reperfusion protocol, RTP-026 (30 µg/kg given i.v. at 0, 3 and 6 h reperfusion) reduced necrotic myocardium by ∼40 %. CONCLUSIONS: RTP-026 modulate immune cell responses and decreases infarct size of the heart in preclinical settings. Tempering over-exuberant immune cell activation by RTP-026 is a suitable approach to translate the biology of AnxA1 for therapeutic purposes.


Asunto(s)
Anexina A1 , Infarto del Miocardio , Ratas , Animales , Humanos , Anexina A1/farmacología , Péptidos/metabolismo , Infarto del Miocardio/metabolismo , Miocardio/metabolismo , Corazón , Neutrófilos/metabolismo
4.
Elife ; 122023 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-37227431

RESUMEN

Background: Many genes associated with asthma explain only a fraction of its heritability. Most genome-wide association studies (GWASs) used a broad definition of 'doctor-diagnosed asthma', thereby diluting genetic signals by not considering asthma heterogeneity. The objective of our study was to identify genetic associates of childhood wheezing phenotypes. Methods: We conducted a novel multivariate GWAS meta-analysis of wheezing phenotypes jointly derived using unbiased analysis of data collected from birth to 18 years in 9568 individuals from five UK birth cohorts. Results: Forty-four independent SNPs were associated with early-onset persistent, 25 with pre-school remitting, 33 with mid-childhood remitting, and 32 with late-onset wheeze. We identified a novel locus on chr9q21.13 (close to annexin 1 [ANXA1], p<6.7 × 10-9), associated exclusively with early-onset persistent wheeze. We identified rs75260654 as the most likely causative single nucleotide polymorphism (SNP) using Promoter Capture Hi-C loops, and then showed that the risk allele (T) confers a reduction in ANXA1 expression. Finally, in a murine model of house dust mite (HDM)-induced allergic airway disease, we demonstrated that anxa1 protein expression increased and anxa1 mRNA was significantly induced in lung tissue following HDM exposure. Using anxa1-/- deficient mice, we showed that loss of anxa1 results in heightened airway hyperreactivity and Th2 inflammation upon allergen challenge. Conclusions: Targeting this pathway in persistent disease may represent an exciting therapeutic prospect. Funding: UK Medical Research Council Programme Grant MR/S025340/1 and the Wellcome Trust Strategic Award (108818/15/Z) provided most of the funding for this study.


Three-quarters of children hospitalized for wheezing or asthma symptoms are preschool-aged. Some will continue to experience breathing difficulties through childhood and adulthood. Others will undergo a complete resolution of their symptoms by the time they reach elementary school. The varied trajectories of young children with wheezing suggest that it is not a single disease. There are likely different genetic or environmental causes. Despite these differences, wheezing treatments for young children are 'one size fits all.' Studying the genetic underpinnings of wheezing may lead to more customized treatment options. Granell et al. studied the genetic architecture of different patterns of wheezing from infancy to adolescence. To do so, they used machine learning technology to analyze the genomes of 9,568 individuals, who participated in five studies in the United Kingdom from birth to age 18. The experiments found a new genetic variation in the ANXA1 gene linked with persistent wheezing starting in early childhood. By comparing mice with and without this gene, Granell et al. showed that the protein encoded by ANXA1 controls inflammation in the lungs in response to allergens. Animals lacking the protein develop worse lung inflammation after exposure to dust mite allergens. Identifying a new gene linked to a specific subtype of wheezing might help scientists develop better strategies to diagnose, treat, and prevent asthma. More studies are needed on the role of the protein encoded by ANXA1 in reducing allergen-triggered lung inflammation to determine if this protein or therapies that boost its production may offer relief for chronic lung inflammation.


Asunto(s)
Asma , Hipersensibilidad , Animales , Ratones , Asma/genética , Asma/diagnóstico , Estudio de Asociación del Genoma Completo , Fenotipo , Ruidos Respiratorios/genética , Anexinas/genética
5.
J Innate Immun ; 15(1): 548-561, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37068475

RESUMEN

Using a global formyl peptide receptor (Fpr) 2 knockout mouse colony, we have reported the modulatory properties of this pro-resolving receptor in polymicrobial sepsis. Herein, we have used a humanized FPR2 (hFPR2) mouse colony, bearing an intact or a selective receptor deficiency in myeloid cells to dwell on the cellular mechanisms. hFPR2 mice and myeloid cell-specific hFPR2 KO (KO) mice were subjected to cecal ligation and puncture (CLP)-induced polymicrobial sepsis. Compared with hFPR2 mice, CLP caused exacerbated cardiac dysfunction (assessed by echocardiography), worsened clinical outcome, and impaired bacterial clearance in KO mice. This pathological scenario was paralleled by increased recruitment of pro-inflammatory monocytes and reduced M2-like macrophages within the KO hearts. In peritoneal exudates of KO mice, we quantified increased neutrophil and MHC II+ macrophage numbers but decreased monocyte/macrophage and MHC II- macrophage recruitment. hFPR2 upregulation was absent in myeloid cells, and local production of lipoxin A4 was reduced in septic KO mice. Administration of the FPR2 agonist annexin A1 (AnxA1) improved cardiac function in hFPR2 septic mice but had limited beneficial effects in KO mice, in which the FPR2 ligand failed to polarize macrophages toward an MHC II- phenotype. In conclusion, FPR2 deficiency in myeloid cells exacerbates cardiac dysfunction and worsens clinical outcome in polymicrobial sepsis. The improvement of cardiac function and the host immune response by AnxA1 is more effective in hFPR2-competent septic mice.


Asunto(s)
Cardiopatías , Receptores de Formil Péptido , Sepsis , Animales , Ratones , Cardiopatías/etiología , Cardiopatías/genética , Cardiopatías/metabolismo , Leucocitos , Macrófagos , Ratones Endogámicos C57BL , Ratones Noqueados , Receptores de Formil Péptido/agonistas , Receptores de Formil Péptido/genética , Receptores de Formil Péptido/metabolismo , Sepsis/complicaciones
8.
Immunol Rev ; 314(1): 36-49, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36326214

RESUMEN

While fundamental in their innate role in combating infection and responding to injury, neutrophils are emerging as key modulators of adaptive immune responses. Such functions are attained via both soluble and nonsoluble effectors that enable at least two major downstream outcomes: first, to mediate and control acute inflammatory responses and second, to regulate adaptive immunity and ultimately promoting the development and maintenance of immune tolerance either by releasing immuno-modulatory factors, including cytokines, or by directly interacting with cells of the adaptive immune system. Herein, we review these novel properties of neutrophils and redefine the pathophysiological functions of these fascinating multi-tasking cells, exploring the different mechanisms through which neutrophils are able to either enhance and orchestrate T cell pro-inflammatory responses or inhibit T cell activity to maintain immune tolerance.


Asunto(s)
Inmunidad Innata , Neutrófilos , Humanos , Linfocitos T , Inflamación , Inmunidad Adaptativa
9.
Circulation ; 147(12): 956-972, 2023 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-36484244

RESUMEN

BACKGROUND: Placental heart development and embryonic heart development occur in parallel, and these organs have been proposed to exert reciprocal regulation during gestation. Poor placentation has been associated with congenital heart disease, an important cause of infant mortality. However, the mechanisms by which altered placental development can lead to congenital heart disease remain unresolved. METHODS: In this study, we use an in vivo neutrophil-driven placental inflammation model through antibody depletion of maternal circulating neutrophils at key stages during time-mated murine pregnancy: embryonic days 4.5 and 7.5. Pregnant mice were culled at embryonic day 14.5 to assess placental and embryonic heart development. A combination of flow cytometry, histology, and bulk RNA sequencing was used to assess placental immune cell composition and tissue architecture. We also used flow cytometry and single-cell sequencing to assess embryonic cardiac immune cells at embryonic day 14.5 and histology and gene analyses to investigate embryonic heart structure and development. In some cases, offspring were culled at postnatal days 5 and 28 to assess any postnatal cardiac changes in immune cells, structure, and cardiac function, as measured by echocardiography. RESULTS: In the present study, we show that neutrophil-driven placental inflammation leads to inadequate placental development and loss of barrier function. Consequently, placental inflammatory monocytes of maternal origin become capable of migration to the embryonic heart and alter the normal composition of resident cardiac macrophages and cardiac tissue structure. This cardiac impairment continues into postnatal life, hindering normal tissue architecture and function. Last, we show that tempering placental inflammation can prevent this fetal cardiac defect and is sufficient to promote normal cardiac function in postnatal life. CONCLUSIONS: Taken together, these observations provide a mechanistic paradigm whereby neutrophil-driven inflammation in pregnancy can preclude normal embryonic heart development as a direct consequence of poor placental development, which has major implications on cardiac function into adult life.


Asunto(s)
Cardiopatías Congénitas , Placenta , Embarazo , Femenino , Ratones , Animales , Placenta/patología , Placentación , Feto , Inflamación/patología
10.
Annu Rev Pharmacol Toxicol ; 63: 449-469, 2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36151051

RESUMEN

Chronic diseases that affect our society are made more complex by comorbidities and are poorly managed by the current pharmacology. While all present inflammatory etiopathogeneses, there is an unmet need for better clinical management of these diseases and their multiple symptoms. We discuss here an innovative approach based on the biology of the resolution of inflammation. Studying endogenous pro-resolving peptide and lipid mediators, how they are formed, and which target they interact with, can offer innovative options through augmenting the expression or function of pro-resolving pathways or mimicking their actions with novel targeted molecules. In all cases, resolution offers innovation for the treatment of the primary cause of a given disease and/or for the management of its comorbidities, ultimately improving patient quality of life. By implementing resolution pharmacology, we harness the whole physiology of inflammation, with the potential to bring a marked change in the management of inflammatory conditions.


Asunto(s)
Anexina A1 , Humanos , Anexina A1/metabolismo , Anexina A1/uso terapéutico , Calidad de Vida , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Lípidos
11.
Front Immunol ; 13: 1078678, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36505403

RESUMEN

Background: Melanocortins are peptides endowed with anti-inflammatory and pro-resolving activities. Many of these effects are mediated by the Melanocortin receptor 1 (MC1) as reported in several experimental settings. As such, MC1 can be a viable target for the development of new therapies that mimic endogenous pro-resolving mediators. The aim of this study was to assess the immunopharmacology of a selective MC1 agonist (PL8177) in vitro and in a mouse model of inflammatory arthritis. Methods: PL8177 and the natural agonist αMSH were tested for activation of mouse and human Melanocortin receptors (MC1,3,4,5), monitoring cAMP accumulation and ERK1/2 phosphorylation, using transiently transfected HEK293A cells. The anti-inflammatory and pro-resolving effects of PL8177 and αMSH were evaluated using mouse peritoneal Macrophages. Finally, a model of K/BxN serum transfer induced arthritis was used to determine the in vivo potential of PL8177. Results: PL8177 activates mouse and human MC1 with apparent EC50 values of 0.01 and 1.49 nM, respectively, using the cAMP accumulation assay. Similar profiles were observed for the induction of ERK phosphorylation (EC50: 0.05 and 1.39 nM). PL8177 displays pro-resolving activity (enhanced Macrophage efferocytosis) and counteracts the inflammatory profile of zymosan-stimulated macrophages, reducing the release of IL-1ß, IL-6, TNF-α and CCL-2. In the context of joint inflammation, PL8177 (3mg/kg i.p.) reduces clinical score, paw swelling and incidence of severe disease as well as the recruitment of immune cells into the arthritic joint. Conclusion: These results demonstrate that the MC1 agonism with PL8177 affords therapeutic effects in inflammatory conditions including arthritis. Significance: Drugs targeting the Melanocortin system have emerged as promising therapeutics for several conditions including inflammation or obesity. Multiple candidates are under clinical development, and some have already reached approval. Here we present the characterization of a novel drug candidate, PL8177, selective for the Melanocortin 1 receptor (MC1), demonstrating its selectivity profile on cAMP and ERK1/2 phosphorylation signaling pathways, of relevance as selective drugs will translate into lesser off-target effect. PL8177 also demonstrated, not only anti-inflammatory activity, but pro-resolving actions due to its ability to enhance efferocytosis (i.e. the phagocytosis of apoptotic cells), endowing this molecule with therapeutic advantages compared to classical anti-inflammatory drugs. Using a mouse model of inflammatory arthritis, the compound demonstrated in vivo efficacy by reducing clinical score, paw swelling and overall disease severity. Taken together, these results present Melanocortin-based therapies, and specifically targeting MC1 receptor, as a promising strategy to manage chronic inflammatory diseases.


Asunto(s)
Artritis , Fagocitosis , Humanos , Artritis/tratamiento farmacológico , alfa-MSH , Inflamación/tratamiento farmacológico , Macrófagos
12.
Cells ; 11(17)2022 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-36078125

RESUMEN

Chikungunya (CHIKV) is an arthritogenic alphavirus that causes a self-limiting disease usually accompanied by joint pain and/or polyarthralgia with disabling characteristics. Immune responses developed during the acute phase of CHIKV infection determine the rate of disease progression and resolution. Annexin A1 (AnxA1) is involved in both initiating inflammation and preventing over-response, being essential for a balanced end of inflammation. In this study, we investigated the role of the AnxA1-FPR2/ALX pathway during CHIKV infection. Genetic deletion of AnxA1 or its receptor enhanced inflammatory responses driven by CHIKV. These knockout mice showed increased neutrophil accumulation and augmented tissue damage at the site of infection compared with control mice. Conversely, treatment of wild-type animals with the AnxA1 mimetic peptide (Ac2-26) reduced neutrophil accumulation, decreased local concentration of inflammatory mediators and diminished mechanical hypernociception and paw edema induced by CHIKV-infection. Alterations in viral load were mild both in genetic deletion or with treatment. Combined, our data suggest that the AnxA1-FPR2/ALX pathway is a potential therapeutic strategy to control CHIKV-induced acute inflammation and polyarthralgia.


Asunto(s)
Fiebre Chikungunya , Inflamación , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Anexina A1/genética , Anexina A1/metabolismo , Artralgia , Fiebre Chikungunya/metabolismo , Inflamación/metabolismo , Ratones , Ratones Noqueados , Receptores de Formil Péptido/metabolismo
13.
Brain Behav Immun ; 106: 289-306, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36115544

RESUMEN

Pain is a persistent symptom of Rheumatoid Arthritis, and the K/BxN serum transfer model recapitulates both association and dissociation between pain and joint inflammation in RA. Furthermore, this model features monocyte/macrophage infiltration in joints and lumbar dorsal root ganglia (DRG), where these immune cells are close to nociceptive neurons. We focussed on CX3CR1-monocyte/macrophage trafficking and show that at peak paw swelling associated with nociception, CX3CR1 deletion altered neither swelling nor macrophage infiltration/phenotype in paws. However, acute nociception and DRG non-classical monocyte numbers were reduced in CX3CR1GFP/GFP (KO) compared to CX3CR1+/GFP (WT). Nociception that persisted despite swelling had resolved was attenuated in KO and correlated with DRG macrophages displaying M2-like phenotype. Still in the DRG, neurons up-regulated neuropeptide CGRP and olcegepant treatment reduced acute swelling, nociception, and leukocyte infiltration in paws and DRG. We delineate in-vitro a signalling pathway showing that CGRP liberates the CX3CR1 ligand fractalkine (FKN) from endothelium, and in bone marrow-derived macrophages, FKN promotes activation of intracellular kinases, polarisation towards M1-like phenotype and release of pro-nociceptive IL-6. These data implicate non-classical CX3CR1-expressing monocyte and macrophage recruitment into the DRG in initiation and maintenance of arthritis pain.


Asunto(s)
Artritis Reumatoide , Quimiocina CX3CL1 , Receptor 1 de Quimiocinas CX3C/metabolismo , Péptido Relacionado con Gen de Calcitonina/metabolismo , Quimiocina CX3CL1/metabolismo , Ganglios Espinales/metabolismo , Humanos , Interleucina-6/metabolismo , Ligandos , Macrófagos/metabolismo , Monocitos/metabolismo , Dolor/metabolismo
14.
Br J Pharmacol ; 179(19): 4617-4639, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35797341

RESUMEN

We discuss the fascinating pharmacology of formylpeptide receptor 2 (FPR2; often referred to as FPR2/ALX since it binds lipoxin A4 ). Initially identified as a low-affinity 'relative' of FPR1, FPR2 presents complex and diverse biology. For instance, it is activated by several classes of agonists (from peptides to proteins and lipid mediators) and displays diverse expression patterns on myeloid cells as well as epithelial cells and endothelial cells, to name a few. Over the last decade, the pharmacology of FPR2 has progressed from being considered a weak chemotactic receptor to a master-regulator of the resolution of inflammation, the second phase of the acute inflammatory response. We propose that exploitation of the biology of FPR2 offers innovative ways to rectify chronic inflammatory states and represents a viable avenue to develop novel therapies. Recent elucidation of FPR2 structure will facilitate development of the anti-inflammatory and pro-resolving drugs of next decade.


Asunto(s)
Lipoxinas , Receptores de Lipoxina , Células Endoteliales/metabolismo , Humanos , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Lipoxinas/farmacología , Receptores de Formil Péptido/metabolismo , Receptores de Lipoxina/metabolismo
15.
J Hypertens ; 40(8): 1522-1529, 2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35730409

RESUMEN

BACKGROUND: Rapid and accurate new biomarkers to predict risk of cardiovascular disease (CVD) are essential. The utility of extracellular vesicles in predicting the CVD risk is postulated, yet it remains unknown whether their expression is altered in response to statin therapy. METHODS: We performed in-vitro studies with human umbilical vein endothelial cells (HUVEC) and vascular smooth muscle cells (hVSMC), and conducted a nested case-control study (nCCS) in hypertensive patients ( n  = 40) randomized to either atorvastatin or placebo in the ASCOT-LLA. Cases had a major adverse cardiovascular event or death (MACE) during 3.5 years of follow-up (median) from the time of extracellular vesicle characterization while controls, matched for age and duration of treatment, remained event-free. Conditional logistic regression models determined the risk of MACE. Additionally, the relationship of extracellular vesicle levels with statin therapy was assessed. RESULTS: Added to HUVEC, extracellular vesicles increased neutrophil recruitment, and to hVSMC, aggravated calcification and proliferation. In the nCCS, compared with controls, cases (i.e. with MACE) had preceding higher levels of CD14+ and CD14+/CD41+ extracellular vesicles ( P  = 0.009 and P  = 0.012, respectively) and a significant reduction in the median size of the vesicles ( P  = 0.037). On matched analysis, higher CD14+ extracellular vesicles were associated with a 3.7-fold increased risk of MACE ( P  = 0.032). Patients treated with atorvastatin (vs. placebo) had both reduced size of extracellular vesicles and the proportion of CD146+ extracellular vesicles ( P  = 0.034 and P  = 0.020, respectively). CONCLUSION AND RELEVANCE: These pilot analyses suggest a mechanistic role for extracellular vesicles in the development of CVD, with significant and differential changes in extracellular vesicles amongst those at risk of MACE, and those on atorvastatin therapy.


Asunto(s)
Enfermedades Cardiovasculares , Vesículas Extracelulares , Inhibidores de Hidroximetilglutaril-CoA Reductasas , Hipertensión , Atorvastatina/efectos adversos , Atorvastatina/uso terapéutico , Enfermedades Cardiovasculares/tratamiento farmacológico , Enfermedades Cardiovasculares/etiología , Estudios de Casos y Controles , Células Endoteliales , Factores de Riesgo de Enfermedad Cardiaca , Humanos , Inhibidores de Hidroximetilglutaril-CoA Reductasas/uso terapéutico , Hipertensión/inducido químicamente , Hipertensión/complicaciones , Hipertensión/tratamiento farmacológico , Factores de Riesgo
16.
Cells ; 11(11)2022 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-35681519

RESUMEN

Inflammation is a life-saving immune reaction occurring in response to invading pathogens. Nonetheless, inflammation can also occur in an uncontrolled, unrestricted manner, leading to chronic disease and organ damage. Mechanisms triggering an inflammatory response, hindering such a response, or leading to its resolution are well-studied but so far insufficiently elucidated with regard to precise therapeutic interventions. Notably, as an immune reaction evolves, requirements and environments for immune cells change, and thus cellular phenotypes adapt and shift, leading to the appearance of distinct cellular subpopulations with new functional features. In this article, we aim to highlight properties of, and overarching regulatory factors involved in, the occurrence of immune cell phenotypes with a special focus on neutrophils, macrophages and platelets. Additionally, we point out implications for both diagnostics and therapeutics in inflammation research.


Asunto(s)
Plasticidad de la Célula , Inflamación , Humanos , Macrófagos , Neutrófilos , Fenotipo
17.
Clin Sci (Lond) ; 136(9): 643-656, 2022 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-35438166

RESUMEN

Annexin A1 (AnxA1) is an important effector in the resolution of inflammation which is involved in modulating hepatic inflammation in nonalcoholic steatohepatitis (NASH). In the present study, we have investigated the possible effects of treatment with AnxA1 for counteracting the progression of experimental NASH. NASH was induced in C57BL/6 mice by feeding methionine-choline deficient (MCD) or Western diets (WDs) and the animals were treated for 4-6 weeks with human recombinant AnxA1 (hrAnxA1; 1 µg, daily IP) or saline once NASH was established. In both experimental models, treatment with hrAnxA1 improved parenchymal injury and lobular inflammation without interfering with the extension of steatosis. Furthermore, administration of hrAnxA1 significantly attenuated the hepatic expression of α1-procollagen and TGF-ß1 and reduced collagen deposition, as evaluated by collagen Sirius Red staining. Flow cytometry and immunohistochemistry showed that hrAnxA1 did not affect the liver recruitment of macrophages, but strongly interfered with the formation of crown-like macrophage aggregates and reduced their capacity of producing pro-fibrogenic mediators like osteopontin (OPN) and galectin-3 (Gal-3). This effect was related to an interference with the acquisition of a specific macrophage phenotype characterized by the expression of the Triggering Receptor Expressed on Myeloid cells 2 (TREM-2), CD9 and CD206, previously associated with NASH evolution to cirrhosis. Collectively, these results indicate that, beside ameliorating hepatic inflammation, AnxA1 is specifically effective in preventing NASH-associated fibrosis by interfering with macrophage pro-fibrogenic features. Such a novel function of AnxA1 gives the rationale for the development of AnxA1 analogs for the therapeutic control of NASH evolution.


Asunto(s)
Anexina A1 , Enfermedad del Hígado Graso no Alcohólico , Animales , Anexina A1/metabolismo , Modelos Animales de Enfermedad , Fibrosis , Inflamación/patología , Hígado/metabolismo , Cirrosis Hepática/metabolismo , Metionina , Ratones , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico/metabolismo
18.
Cells ; 11(5)2022 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-35269381

RESUMEN

Annexin-A1 (AnxA1) and its N-terminal derived peptide Ac2-26 regulate the inflammatory response in several experimental models of disorders. This study evaluated the effect of endogenous AnxA1 and its N-terminal peptide Acetyl 2-26 (Ac2-26) on allergic asthma triggered by house dust mite (HDM) extract in mice. ANXA1-/- and wildtype (WT) mice were exposed to intranasal instillation of HDM every other day for 3 weeks, with analyses performed 24 h following the last exposure. Intranasal administration of peptide Ac2-26 was performed 1 h before HDM, beginning 1 week after the initial antigen application. ANXA1-/- mice stimulated with HDM showed marked exacerbations of airway hyperreactivity (AHR), eosinophil accumulation, subepithelial fibrosis, and mucus hypersecretion, all parameters correlating with overexpression of cytokines (IL-4, IL-13, TNF-α, and TGF-ß) and chemokines (CCL11/eotaxin-1 and CCL2/MCP-1). Intranasal treatment with peptide Ac2-26 decreased eosinophil infiltration, peribronchiolar fibrosis, and mucus exacerbation caused by the allergen challenge. Ac2-26 also inhibited AHR and mediator production. Collectively, our findings show that the AnxA1-derived peptide Ac2-26 protects against several pathological changes associated with HDM allergic reaction, suggesting that this peptide or related AnxA1-mimetic Ac2-26 may represent promising therapeutic candidates for the treatment of allergic asthma.


Asunto(s)
Asma , Inflamación , Alérgenos , Animales , Asma/tratamiento farmacológico , Citocinas , Fibrosis , Inflamación/tratamiento farmacológico , Inflamación/patología , Ratones , Péptidos/farmacología , Péptidos/uso terapéutico
19.
Elife ; 112022 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-35293862

RESUMEN

Host immune responses contribute to dengue's pathogenesis and severity, yet the possibility that failure in endogenous inflammation resolution pathways could characterise the disease has not been contemplated. The pro-resolving protein Annexin A1 (AnxA1) is known to counterbalance overexuberant inflammation and mast cell (MC) activation. We hypothesised that inadequate AnxA1 engagement underlies the cytokine storm and vascular pathologies associated with dengue disease. Levels of AnxA1 were examined in the plasma of dengue patients and infected mice. Immunocompetent, interferon (alpha and beta) receptor one knockout (KO), AnxA1 KO, and formyl peptide receptor 2 (FPR2) KO mice were infected with dengue virus (DENV) and treated with the AnxA1 mimetic peptide Ac2-26 for analysis. In addition, the effect of Ac2-26 on DENV-induced MC degranulation was assessed in vitro and in vivo. We observed that circulating levels of AnxA1 were reduced in dengue patients and DENV-infected mice. Whilst the absence of AnxA1 or its receptor FPR2 aggravated illness in infected mice, treatment with AnxA1 agonistic peptide attenuated disease manifestationsatteanuated the symptoms of the disease. Both clinical outcomes were attributed to modulation of DENV-mediated viral load-independent MC degranulation. We have thereby identified that altered levels of the pro-resolving mediator AnxA1 are of pathological relevance in DENV infection, suggesting FPR2/ALX agonists as a therapeutic target for dengue disease.


Asunto(s)
Anexina A1 , Dengue , Animales , Anexina A1/metabolismo , Dengue/tratamiento farmacológico , Humanos , Inflamación/patología , Ratones , Péptidos/metabolismo , Receptores de Formil Péptido/metabolismo , Receptores de Lipoxina/metabolismo
20.
Brain Behav Immun ; 102: 179-194, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35217174

RESUMEN

Living in isolation is considered an emerging societal problem that negatively affects the physical wellbeing of its sufferers in ways that we are just starting to appreciate. This study investigates the immunomodulatory effects of social isolation in mice, utilising a two-week program of sole cage occupancy followed by the testing of immune-inflammatory resilience to bacterial sepsis. Our results revealed that mice housed in social isolation showed an increased ability to clear bacterial infection compared to control socially housed animals. These effects were associated with specific changes in whole blood gene expression profile and an increased production of classical pro-inflammatory cytokines. Interestingly, equipping socially isolated mice with artificial nests as a substitute for their natural huddling behaviour reversed the increased resistance to bacterial sepsis. Together these results suggest that the control of body temperature through social housing and huddling behaviour are important factors in the regulation of the host immune response to infection in mice and might provide another example of the many ways by which living conditions influence immunity.


Asunto(s)
Sepsis , Aislamiento Social , Animales , Inmunidad , Ratones , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...