Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cells ; 12(8)2023 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-37190056

RESUMEN

Pluripotent stem (PS) cells enable the scalable production of tissue-specific derivatives with therapeutic potential for various clinical applications, including muscular dystrophies. Given the similarity to human counterparts, the non-human primate (NHP) is an ideal preclinical model to evaluate several questions, including delivery, biodistribution, and immune response. While the generation of human-induced PS (iPS)-cell-derived myogenic progenitors is well established, there have been no data for NHP counterparts, probably due to the lack of an efficient system to differentiate NHP iPS cells towards the skeletal muscle lineage. Here, we report the generation of three independent Macaca fascicularis iPS cell lines and their myogenic differentiation using PAX7 conditional expression. The whole-transcriptome analysis confirmed the successful sequential induction of mesoderm, paraxial mesoderm, and myogenic lineages. NHP myogenic progenitors efficiently gave rise to myotubes under appropriate in vitro differentiation conditions and engrafted in vivo into the TA muscles of NSG and FKRP-NSG mice. Lastly, we explored the preclinical potential of these NHP myogenic progenitors in a single wild-type NHP recipient, demonstrating engraftment and characterizing the interaction with the host immune response. These studies establish an NHP model system through which iPS-cell-derived myogenic progenitors can be studied.


Asunto(s)
Células Madre Pluripotentes Inducidas , Células Madre Pluripotentes , Animales , Ratones , Células Madre Pluripotentes Inducidas/metabolismo , Distribución Tisular , Células Madre Pluripotentes/metabolismo , Músculo Esquelético/metabolismo , Primates , Pentosiltransferasa/metabolismo
2.
Blood Adv ; 6(18): 5267-5278, 2022 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-35404997

RESUMEN

Administration of ex vivo expanded somatic myeloid progenitors has been explored as a way to facilitate a more rapid myeloid recovery and improve overall survival after myeloablation. Recent advances in induced pluripotent stem cell (iPSC) technologies have created alternative platforms for supplying off-the-shelf immunologically compatible myeloid progenitors, including cellular products derived from major histocompatibility complex (MHC) homozygous superdonors, potentially increasing the availability of MHC-matching cells and maximizing the utility of stem cell banking. However, the teratogenic and tumorigenic potential of iPSC-derived progenitor cells and whether they will induce alloreactive antibodies upon transfer remain unclear. We evaluated the safety and efficacy of using CD34+CD45+ hematopoietic progenitors derived from MHC homozygous iPSCs (iHPs) to treat cytopenia after myeloablative hematopoietic stem cell (HSC) transplantation in a Mauritian cynomolgus macaque (MCM) nonhuman primate (NHP) model. We demonstrated that infusion of iHPs was well tolerated and safe, observing no teratomas or tumors in the MCMs up to 1 year after HSC transplantation and iHP infusion. Importantly, the iHPs also did not induce significant levels of alloantibodies in MHC-matched or -mismatched immunocompetent MCMs, even after increasing MHC expression on iHPs with interferon-γ. These results support the feasibility of iHP use in the setting of myeloablation and suggest that iHP products pose a low risk of inducing alloreactive antibodies.


Asunto(s)
Trasplante de Células Madre Hematopoyéticas , Células Madre Pluripotentes Inducidas , Animales , Antígenos CD34 , Interferón gamma , Isoanticuerpos , Macaca fascicularis , Complejo Mayor de Histocompatibilidad
3.
J Leukoc Biol ; 112(4): 759-769, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35352381

RESUMEN

Nonhuman primates (NHPs) represent one of the most important models for preclinical studies of novel biomedical interventions. In contrast with small animal models, however, widespread utilization of NHPs is restricted by cost, logistics, and availability. Therefore, we sought to develop a translational primatized mouse model, akin to a humanized mouse, to allow for high-throughput in vivo experimentation leveraged to inform large animal immunology-based studies. We found that adult rhesus macaque mobilized blood (AMb) CD34+-enriched hematopoietic stem and progenitor cells (HSPCs) engrafted at low but persistent levels in immune-deficient mice harboring transgenes for human (NHP cross-reactive) GM-CSF and IL3, but did not in mice with wild-type murine cytokines lacking NHP cross-reactivity. To enhance engraftment, fetal liver-derived HSPCs were selected as the infusion product based on an increased CD34hi fraction compared with AMb and bone marrow. Coupled with cotransplantation of rhesus fetal thymic fragments beneath the mouse kidney capsule, fetal liver-derived HSPC infusion in cytokine-transgenic mice yielded robust multilineage lymphohematopoietic engraftment. The emergent immune system recapitulated that of the fetal monkey, with similar relative frequencies of lymphocyte, granulocyte, and monocyte subsets within the thymic, secondary lymphoid, and peripheral compartments. Importantly, while exhibiting a predominantly naïve phenotype, in vitro functional assays demonstrated robust cellular activation in response to nonspecific and allogenic stimuli. This primatized mouse represents a viable and translatable model for the study of hematopoietic stem cell physiology, immune development, and functional immunology in NHPs. Summary Sentence: Engraftment of rhesus macaque hematopoietic tissues in immune-deficient mice yields a robust BLT/NeoThy-type primatized mouse model for studying nonhuman primate hematopoiesis and immune function in vivo.


Asunto(s)
Factor Estimulante de Colonias de Granulocitos y Macrófagos , Trasplante de Células Madre Hematopoyéticas , Animales , Antígenos CD34 , Sangre Fetal , Células Madre Hematopoyéticas , Humanos , Macaca mulatta , Ratones , Ratones SCID , Ratones Transgénicos
4.
J Am Heart Assoc ; 8(15): e012135, 2019 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-31313646

RESUMEN

Background Arterial bypass and interposition grafts are used routinely across multiple surgical subspecialties. Current options include both autologous and synthetic materials; however, each graft presents specific limitations. Engineering artificial small-diameter arteries with vascular cells derived from induced pluripotent stem cells could provide a useful therapeutic solution. Banking induced pluripotent stem cells from rare individuals who are homozygous for human leukocyte antigen alleles has been proposed as a strategy to facilitate economy of scale while reducing the potential for rejection of induced pluripotent stem cell-derived transplanted tissues. Currently, there is no standardized model to study transplantation of small-diameter arteries in major histocompatibility complex-defined backgrounds. Methods and Results In this study, we developed a limb-sparing nonhuman primate model to study arterial allotransplantation in the absence of immunosuppression. Our model was used to compare degrees of major histocompatibility complex matching between arterial grafts and recipient animals with long-term maintenance of patency and function. Unexpectedly, we (1) found that major histocompatibility complex partial haplomatched allografts perform as well as autologous control grafts; (2) detected little long-term immune response in even completely major histocompatibility complex mismatched allografts; and (3) observed that arterial grafts become almost completely replaced over time with recipient cells. Conclusions Given these findings, induced pluripotent stem cell-derived tissue-engineered blood vessels may prove to be promising and customizable grafts for future use by cardiac, vascular, and plastic surgeons.


Asunto(s)
Arterias/trasplante , Células Madre Pluripotentes Inducidas/trasplante , Complejo Mayor de Histocompatibilidad , Grado de Desobstrucción Vascular , Animales , Autoinjertos , Femenino , Macaca , Masculino , Modelos Animales
5.
Ecology ; 89(11): 3204-3214, 2008 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31766790

RESUMEN

The temporal stability of aggregate community and ecosystem properties is influenced by the variability of component populations, the interactions among populations, and the influence of environmental fluctuations on populations. Environmental fluctuations that enhance population variability are generally expected to destabilize community and ecosystem properties, but this will depend on the degree to which populations are synchronized in their dynamics. Here we use seminatural experimental ponds to show that reduced synchrony among zooplankton taxa increases the temporal stability of zooplankton density, abundance, and ecosystem productivity in fluctuating environments. However, asynchrony only occurs at long timescales (∼80-day periods) and under recurring environmental perturbations. At shorter timescales (∼10-day periods) and in constant environments, synchronous dynamics dominate. Our findings support recent theory indicating that compensatory dynamics can stabilize communities and ecosystems. They further indicate that environmental fluctuations can enhance the likelihood of long-period asynchrony and thus stabilize community and ecosystem properties despite their short term destabilizing effects.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...