Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
bioRxiv ; 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38405806

RESUMEN

One of the most prevalent axes of behavioral variation in both humans and animals is risk taking, where individuals that are more willing to take risk are characterized as bold while those that are more reserved as shy. Brain monoamines (i.e., serotonin, dopamine, and norepinephrine) have been found to play a role in a variety of behaviors related to risk taking. Genetic variation related to monoamine function have also been linked to personality in both humans and animals. Using zebrafish, we investigated the relationship between monoamine function and boldness behavior during exploration of a novel tank. We found a sex-specific correlation between serotonin metabolism (5-HIAA:5-HT ratio) and boldness that was limited to female animals; there were no relationships between boldness and dopamine or norepinephrine. To probe differences in serotonergic function, we administered a serotonin reuptake inhibitor, escitalopram, to bold and shy fish, and assessed their exploratory behavior. We found that escitalopram had opposing effects on thigmotaxis in female animals with bold fish spending more time near the center of the tank and shy fish spent more time near the periphery. Taken together, our findings suggest that variation in serotonergic function makes sex-specific contributions to individual differences in risk taking behavior.

2.
Neurophotonics ; 11(1): 015007, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38344025

RESUMEN

Significance: There are many neuroscience questions that can be answered by a high-resolution functional brain imaging system. Such a system would require the capability to visualize vasculature and measure neural activity by imaging the entire brain continually and in rapid succession in order to capture hemodynamic changes. Utilizing optical excitation and acoustic detection, photoacoustic technology enables label-free quantification of changes in endogenous chromophores, such as oxyhemoglobin, deoxyhemoglobin, and total hemoglobin. Aim: Our aim was to develop a sufficiently high-resolution, fast frame-rate, and wide field-of-view (FOV) photoacoustic microscopy (PAM) system for the purpose of imaging vasculature and hemodynamics in a rat brain. Approach: Although the most PA microscopy systems use raster scanning (or less commonly Lissajous scanning), we have developed a simple-to-implement laser scanning optical resolution PAM system with spiral scanning (which we have named "spiral laser scanning photoacoustic microscopy" or sLS-PAM) to acquire an 18 mm diameter image at fast frame rate (more than 1 fps). Such a system is designed to permit continuous rat brain imaging without the introduction of photobleaching artifacts. Conclusion: We demonstrated the functional imaging capability of the sLS-PAM system by imaging cerebral hemodynamics in response to whisker and electrical stimulation and used it for vascular imaging of a modeled brain injury. We believe that we have demonstrated the development of a simple-to-implement PAM system, which could become an affordable functional neuroimaging tool for researchers.

3.
Neurotoxicol Teratol ; 101: 107317, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38199311

RESUMEN

Currently, there is a gap in understanding the neurobiological impact early adolescent toluene exposure has on subsequent actions of other drugs. Adolescent (PND 28-32) male Swiss-Webster mice (N = 210) were exposed to 0, 2000, or 4000 ppm of toluene vapor for 30 min/day for 5 days. Immediately following the last toluene exposure (PND 32; n = 15) or after a short delay (PND 35; n = 15), a subset of subjects' brains was collected for monoamine analysis. Remaining mice were assigned to one of two abstinence periods: a short 4-day (PND 36) or long 12-day (PND 44) delay after toluene exposure. Mice were then subjected to a cumulative dose response assessment of either cocaine (0, 2.5, 5, 10, 20 mg/kg; n = 60), ethanol (0, 0.5, 1, 2, 4 g/kg; n = 60), or saline (5 control injections; n = 60). Toluene concentration-dependently increased locomotor activity during exposure. When later challenged, mice exposed previously to toluene were significantly less active after cocaine (10 and 20 mg/kg) compared to air-exposed controls. Animals were also less active at the highest dose of alcohol (4 g/kg) following prior exposure to 4000 ppm when compared to air-exposed controls. Analysis of monoamines and their metabolites using High Pressure Liquid Chromatography (HPLC) within the medial prefrontal cortex (mPFC), nucleus accumbens (NAc), dorsal striatum (dSTR), and ventral tegmental area (VTA) revealed subtle effects on monoamine or metabolite levels following cumulative dosing that varied by drug (cocaine and ethanol) and abstinence duration. Our results suggest that early adolescent toluene exposure produces behavioral desensitization to subsequent cocaine-induced locomotor activity with subtle enhancement of ethanol's depressive effects and less clear impacts on levels of monoamines.


Asunto(s)
Cocaína , Etanol , Humanos , Ratones , Animales , Masculino , Adolescente , Etanol/farmacología , Encéfalo , Núcleo Accumbens/metabolismo , Catecolaminas/metabolismo , Catecolaminas/farmacología , Cocaína/farmacología , Tolueno/toxicidad
4.
Photoacoustics ; 33: 100551, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38021296

RESUMEN

Understanding the neurobiology of complex behaviors requires measurement of activity in the discrete population of active neurons, neuronal ensembles, which control the behavior. Conventional neuroimaging techniques ineffectively measure neuronal ensemble activity in the brain in vivo because they assess the average regional neuronal activity instead of the specific activity of the neuronal ensemble that mediates the behavior. Our functional molecular photoacoustic tomography (FM-PAT) system allows direct imaging of Fos-dependent neuronal ensemble activation in Fos-LacZ transgenic rats in vivo. We tested four experimental conditions and found increased FM-PAT signal in prefrontal cortical areas in rats undergoing conditioned fear or novel context exposure. A parallel immunofluorescence ex vivo study of Fos expression found similar findings. These findings demonstrate the ability of FM-PAT to measure Fos-expressing neuronal ensembles directly in vivo and support a mechanistic role for the prefrontal cortex in higher-order processing of response to specific stimuli or environmental cues.

5.
Psychopharmacology (Berl) ; 240(12): 2585-2595, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37658879

RESUMEN

RATIONALE: The contribution of norepinephrine on the different phases of spatial memory processing remains incompletely understood. To address this gap, this study depleted norepinephrine in the brain and then conducted a spatial learning task with multiple phases. METHODS: Male and female Wistar rats were administered 50 mg/kg/i.p. of DSP-4 (N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine) to deplete norepinephrine. After 10 days, rats were trained on a 20-hole Barnes maze spatial navigation task for 5 days. On the fifth day, animals were euthanized and HPLC was used to confirm depletion of norepinephrine in select brain regions. In Experiment 2, rats underwent a similar Barnes maze procedure that continued beyond day 5 to investigate memory retrieval and updating via a single probe trial and two reversal learning periods. RESULTS: Rats did not differ in Barnes maze acquisition between DSP-4 and saline-injected rats; however, initial acquisition differed between the sexes. HPLC analysis confirmed selective depletion of norepinephrine in dorsal hippocampus and cingulate cortex without impact to other monoamines. When retrieval was tested through a probe trial, DSP-4-improved memory retrieval in males but impaired it in females. Cognitive flexibility was transiently impacted by DSP-4 in males only. CONCLUSIONS: Despite significantly reducing levels of norepinephrine, DSP-4 had only a modest impact on spatial learning and behavioral flexibility. Memory retrieval and early reversal learning were most affected and in a sex-specific manner. These data suggest that norepinephrine has sex-specific neuromodulatory effects on memory retrieval with a lesser effect on cognitive flexibility and no impact on acquisition of learned behavior.


Asunto(s)
Norepinefrina , Aprendizaje Espacial , Ratas , Animales , Masculino , Femenino , Norepinefrina/farmacología , Ratas Wistar , Encéfalo , Memoria Espacial , Aprendizaje por Laberinto
6.
Addict Neurosci ; 42022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36540409

RESUMEN

Repeated cocaine alters neuronal function in the nucleus accumbens (NAc), a brain region involved in cocaine taking, and in hippocampus (HC), known for contextual and associative learning. [18F]TFAHA is a histone deacetylase (HDAC) class IIa-specific radiotracer for positron emission tomography (PET)-imaging developed by our group to study epigenetic mechanisms. Here, [18F]TFAHA was used to conduct PET-imaging coupled with computed tomography (CT) of rat brains at baseline and after repeated cocaine intravenous self-administration (cocaine-IVSA) in low-intake versus high-intake cocaine groups. A 3 h-access FR1-schedule of cocaine-IVSA (0.5 mg/kg/infusion) for 12 continuous days was used with male Sprague Dawley rats following jugular vein catheterization. PET/CT neuroimaging with [18F]TFAHA was acquired in a dynamic mode over 40 min post-radiotracer administration at baseline and on day 12 of cocaine-IVSA using a longitudinal, repeated design. This study shows that high-cocaine intake significantly decreases class IIa HDAC expression-activity in NAc, while low-cocaine intake significantly decreases expression-activity in HC in male rats. These findings suggest the individual rats with low-cocaine intake had epigenetic changes in HC, where drug-associative changes occur. Alternatively, individuals with high-cocaine intake had robust epigenetic changes in NAc, where rewared-related behaviors originate. These findings are the first longitudinal data obtained in vivo to implicate class IIa HDACs in the persistent behavioral effects of cocaine. Furthermore, our results are consistent with published research implicating class IIa HDACs in cocaine-induced brain changes and studies suggesting a relationship between an individual's drug-taking behavior and regional pattern of epigenetic changes in the brain.

9.
Neurotoxicol Teratol ; 91: 107076, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35167944

RESUMEN

Environmental exposure to toxicants is a major health issue and a leading risk factor for premature mortality worldwide, including environmental exposures to volatile organic compounds (VOCs), specifically Benzene, Toluene, Ethylbenzene, and Xylene (BTEX). While exposure to these compounds individually has shown behavioral and neurochemical effects, this investigation examined the impact of exposure to combined BTEX using a preclinical model. Male Swiss Webster mice were exposed to BTEX vapors designed to approximate environmental levels in urban communities. Animals were exposed to one of four treatment conditions: a 0-ppm (air control), two BTEX groups representing levels of environmental-like exposure, and a fourth group modeling occupational-like exposure. These exposures were conducted in 1.5-h sessions, 2 sessions/day, 5 days/week, for 3 weeks. Effects on coordination (i.e., rotarod and inverted screen test), learning and memory (i.e., Y-maze), and locomotor behavior (i.e., movement during exposure) were assessed during and after exposure. Monoamine levels in the medial prefrontal cortex and nucleus accumbens were assessed immediately following exposure. Effects of BTEX exposure were found on the variance of locomotor activity but not in other behavioral or neurochemical assessments. These results indicate that the combination of inhaled BTEX at environmentally representative concentrations has demonstrable, albeit subtle, effects on behavior.


Asunto(s)
Contaminantes Atmosféricos , Xilenos , Animales , Benceno/análisis , Benceno/toxicidad , Derivados del Benceno/análisis , Derivados del Benceno/toxicidad , Masculino , Ratones , Tolueno/toxicidad , Xilenos/análisis , Xilenos/toxicidad
10.
Mol Psychiatry ; 27(3): 1683-1693, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35027678

RESUMEN

The fundamental role of epigenetic regulatory mechanisms involved in neuroplasticity and adaptive responses to traumatic brain injury (TBI) is gaining increased recognition. TBI-induced neurodegeneration is associated with several changes in the expression-activity of various epigenetic regulatory enzymes, including histone deacetylases (HDACs). In this study, PET/CT with 6-([18F]trifluoroacetamido)-1- hexanoicanilide ([18F]TFAHA) to image spatial and temporal dynamics of HDACs class IIa expression-activity in brains of adult rats subjected to a weight drop model of diffuse, non-penetrating, mild traumatic brain injury (mTBI). The mTBI model was validated by histopathological and immunohistochemical analyses of brain tissue sections for localization and magnitude of expression of heat-shock protein-70 kDa (HSP70), amyloid precursor protein (APP), cannabinoid receptor-2 (CB2), ionized calcium-binding adapter protein-1 (IBA1), histone deacetylase-4 and -5 (HDAC4 and HDAC5). In comparison to baseline, the expression-activities of HDAC4 and HDAC5 were downregulated in the hippocampus, nucleus accumbens, peri-3rd ventricular part of the thalamus, and substantia nigra at 1-3 days post mTBI, and remained low at 7-8 days post mTBI. Reduced levels of HDAC4 and HDAC5 expression observed in neurons of these brain regions post mTBI were associated with the reduced nuclear and neuropil levels of HDAC4 and HDAC5 with the shift to perinuclear localization of these enzymes. These results support the rationale for the development of therapeutic strategies to upregulate expression-activity of HDACs class IIa post-TBI. PET/CT (MRI) with [18F]TFAHA can facilitate the development and clinical translation of unique therapeutic approaches to upregulate the expression and activity of HDACs class IIa enzymes in the brain after TBI.


Asunto(s)
Conmoción Encefálica , Tomografía Computarizada por Tomografía de Emisión de Positrones , Anilidas , Animales , Epigénesis Genética , Fluoroacetatos , Histona Desacetilasas/metabolismo , Ratas
11.
Drug Alcohol Depend ; 229(Pt A): 109101, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34628096

RESUMEN

BACKGROUND: Although fentanyl has gained widespread prominence, there remains a lack of knowledge on this opioid synthetic agonist, particularly related to sex effects. Therefore, we conducted behavioral tests in female and male rats to measure drug abuse-related responses to fentanyl hypothesizing sex-specific responses. METHODS: Using female and male rats, we measured the effects of acute or repeated administration of fentanyl (20 µg/kg) on locomotor activity (LMA) and behavioral sensitization in an open field test. We further measured contextual-reward and associated locomotor activity during training in a conditioned place preference (CPP) paradigm using a low (4 µg/kg) or high (16 µg/kg) dose of fentanyl. Vaginal lavage samples were collected from female rats in the CPP study, and the estrous phase was determined based on the cytological characterization. RESULTS: Female, but not male, rats showed elevated LMA in response to acute fentanyl and behavioral sensitization to repeated administration of fentanyl. Fentanyl produced significant CPP in both sexes, but it was more potent in males. Finally, our secondary investigation of the estrous cycle on fentanyl-CPP suggests that non-estrus phases, likely reflecting high estradiol, may predict the degree of fentanyl preference in females. CONCLUSIONS: Fentanyl was more potent and/or effective to produce LMA and LMA sensitization in females but more potent to produce CPP in males. Furthermore, the role of sex in fentanyl responses varied across endpoints, and sex differences in LMA were not predictive of sex differences in CPP.


Asunto(s)
Fentanilo , Recompensa , Animales , Condicionamiento Clásico , Femenino , Fentanilo/farmacología , Locomoción , Masculino , Ratas
12.
Photoacoustics ; 24: 100297, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34522608

RESUMEN

Measuring neuroactivity underlying complex behaviors facilitates understanding the microcircuitry that supports these behaviors. We have developed a functional and molecular photoacoustic tomography (F/M-PAT) system which allows direct imaging of Fos-expressing neuronal ensembles in Fos-LacZ transgenic rats with a large field-of-view and high spatial resolution. F/M-PAT measures the beta-galactosidase catalyzed enzymatic product of exogenous chromophore X-gal within ensemble neurons. We used an ex vivo imaging method in the Wistar Fos-LacZ transgenic rat, to detect neuronal ensembles in medial prefrontal cortex (mPFC) following cocaine administration or a shock-tone paired stimulus. Robust and selective F/M-PAT signal was detected in mPFC neurons after both conditions (compare to naive controls) demonstrating successful and direct detection of Fos-expressing neuronal ensembles using this approach. The results of this study indicate that F/M-PAT can be used in conjunction with Fos-LacZ rats to monitor neuronal ensembles that underlie a range of behavioral processes, such as fear learning or addiction.

13.
Front Behav Neurosci ; 15: 652636, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34054443

RESUMEN

Posttraumatic stress disorder (PTSD) is a mental health condition triggered by experiencing or witnessing a terrifying event that can lead to lifelong burden that increases mortality and adverse health outcomes. Yet, no new treatments have reached the market in two decades. Thus, screening potential interventions for PTSD is of high priority. Animal models often serve as a critical translational tool to bring new therapeutics from bench to bedside. However, the lack of concordance of some human clinical trial outcomes with preclinical animal efficacy findings has led to a questioning of the methods of how animal studies are conducted and translational validity established. Thus, we conducted a systematic review to determine methodological variability in studies that applied a prominent animal model of trauma-like stress, single prolonged stress (SPS). The SPS model has been utilized to evaluate a myriad of PTSD-relevant outcomes including extinction retention. Rodents exposed to SPS express an extinction retention deficit, a phenotype identified in humans with PTSD, in which fear memory is aberrantly retained after fear memory extinction. The current systematic review examines methodological variation across all phases of the SPS paradigm, as well as strategies for behavioral coding, data processing, statistical approach, and the depiction of data. Solutions for key challenges and sources of variation within these domains are discussed. In response to methodological variation in SPS studies, an expert panel was convened to generate methodological considerations to guide researchers in the application of SPS and the evaluation of extinction retention as a test for a PTSD-like phenotype. Many of these guidelines are applicable to all rodent paradigms developed to model trauma effects or learned fear processes relevant to PTSD, and not limited to SPS. Efforts toward optimizing preclinical model application are essential for enhancing the reproducibility and translational validity of preclinical findings, and should be conducted for all preclinical psychiatric research models.

14.
Molecules ; 26(7)2021 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-33917316

RESUMEN

The cannabinoid system is independently affected by stress and chronic ethanol exposure. However, the extent to which co-occurrence of traumatic stress and chronic ethanol exposure modulates the cannabinoid system remains unclear. We examined levels of cannabinoid system components, anandamide, 2-arachidonoylglycerol, fatty acid amide hydrolase, and monoacylglycerol lipase after mouse single-prolonged stress (mSPS) or non-mSPS (Control) exposure, with chronic intermittent ethanol (CIE) vapor or without CIE vapor (Air) across several brain regions using ultra-high-performance liquid chromatography tandem mass spectrometry or immunoblotting. Compared to mSPS-Air mice, anandamide and 2-arachidonoylglycerol levels in the anterior striatum were increased in mSPS-CIE mice. In the dorsal hippocampus, anandamide content was increased in Control-CIE mice compared to Control-Air, mSPS-Air, or mSPS-CIE mice. Finally, amygdalar anandamide content was increased in Control-CIE mice compared to Control-Air, or mSPS-CIE mice, but the anandamide content was decreased in mSPS-CIE compared to mSPS-Air mice. Based on these data we conclude that the effects of combined traumatic stress and chronic ethanol exposure on the cannabinoid system in reward pathway regions are driven by CIE exposure and that traumatic stress affects the cannabinoid components in limbic regions, warranting future investigation of neurotherapeutic treatment to attenuate these effects.


Asunto(s)
Cannabinoides/metabolismo , Etanol/efectos adversos , Sistema Límbico/metabolismo , Recompensa , Trastornos por Estrés Postraumático/metabolismo , Amidohidrolasas/metabolismo , Animales , Ácidos Araquidónicos/metabolismo , Endocannabinoides/metabolismo , Glicéridos/metabolismo , Masculino , Ratones Endogámicos C57BL , Monoacilglicerol Lipasas/metabolismo , Alcamidas Poliinsaturadas/metabolismo
15.
Sci Rep ; 10(1): 17935, 2020 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-33087769

RESUMEN

Stress in adolescence can regulate vulnerability to traumatic stress in adulthood through region-specific epigenetic activity and catecholamine levels. We hypothesized that stress in adolescence would increase adult trauma vulnerability by impairing extinction-retention, a deficit in PTSD, by (1) altering class IIa histone deacetylases (HDACs), which integrate effects of stress on gene expression, and (2) enhancing norepinephrine in brain regions regulating cognitive effects of trauma. We investigated the effects of adolescent-stress on adult vulnerability to severe stress using the single-prolonged stress (SPS) model in male rats. Rats were exposed to either (1) adolescent-stress (33-35 postnatal days) then SPS (58-60 postnatal days; n = 14), or (2) no adolescent-stress and SPS (58-60 postnatal days; n = 14), or (3) unstressed conditions (n = 8). We then measured extinction-retention, norepinephrine, HDAC4, and HDAC5. As expected, SPS exposure induced an extinction-retention deficit. Adolescent-stress prior to SPS eliminated this deficit, suggesting adolescent-stress conferred resiliency to adult severe stress. Adolescent-stress also conferred region-specific resilience to norepinephrine changes. HDAC4 and HDAC5 were down-regulated following SPS, and these changes were also modulated by adolescent-stress. Regulation of HDAC levels was consistent with the pattern of cognitive effects of SPS; only animals exposed to SPS without adolescent-stress exhibited reduced HDAC4 and HDAC5 in the prelimbic cortex, hippocampus, and striatum. Thus, HDAC regulation caused by severe stress in adulthood interacts with stress history such that seemingly conflicting reports describing effects of adolescent stress on adult PTSD vulnerability may stem in part from dynamic HDAC changes following trauma that are shaped by adolescent stress history.


Asunto(s)
Conducta del Adolescente/fisiología , Conducta del Adolescente/psicología , Epigénesis Genética , Norepinefrina/metabolismo , Psicología del Adolescente , Trastornos por Estrés Postraumático/etiología , Estrés Psicológico , Adolescente , Animales , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Extinción Psicológica/fisiología , Histona Desacetilasas/metabolismo , Humanos , Masculino , Ratas Sprague-Dawley , Retención en Psicología/fisiología , Trastornos por Estrés Postraumático/genética , Trastornos por Estrés Postraumático/metabolismo , Trastornos por Estrés Postraumático/psicología
16.
Front Behav Neurosci ; 14: 114, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32694985

RESUMEN

Individuals with post-traumatic stress disorder (PTSD) often use alcohol to cope with their distress. This aberrant use of alcohol often develops into alcohol use disorder (AUD) leading to high rates of PTSD-AUD co-occurrence. Individuals with comorbid PTSD-AUD have more intense alcohol cravings and increased relapse rates during withdrawal than those with AUD alone. Also, individuals with PTSD or AUD alone often show similar psychological behaviors, such as impulsivity and anhedonia. Extensive clinical studies on the behavioral effects of PTSD-AUD comorbidity, namely alcohol use, have been performed. However, these effects have not been well studied or mechanistically explored in animal models. Therefore, the present study evaluated the effects of traumatic stress comorbid with alcohol exposures on ethanol intake, impulsivity, and anhedonia in mice. Adult male C57Bl/6 mice were first exposed to either mouse single-prolonged stress (mSPS), an animal model that has been validated for characteristics akin to PTSD symptoms, or control conditions. Baseline two-bottle choice ethanol consumption and preference tests were conducted after a 7-day isolation period, as part of the mSPS exposure. Next, mice were exposed to air or chronic intermittent ethanol (CIE), a vapor-induced ethanol dependence and withdrawal model, for 4 weeks. Two-bottle choice ethanol drinking was used to measure dependence-induced ethanol consumption and preference during periods intervening CIE cycles. The novelty suppressed feeding (NSF) test was used to evaluate impulsivity and anhedonia behaviors 48 h after mSPS and/or repeated CIE exposure. Results showed that, compared to control conditions, mSPS did not affect baseline ethanol consumption and preference. However, mSPS-CIE mice increased Post-CIE ethanol consumption compared to Control-Air mice. Mice exposed to mSPS had a shorter latency to feed during the NSF, whereas CIE-exposed mice consumed less palatable food reward in their home cage after the NSF. These results demonstrate that mice exposed to both mSPS and CIE are more vulnerable to ethanol withdrawal effects, and those exposed to mSPS have increased impulsivity, while CIE exposure increases anhedonia. Future studies to examine the relationship between behavioral outcomes and the molecular mechanisms in the brain after PTSD-AUD are warranted.

17.
Front Behav Neurosci ; 13: 237, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31680894
18.
Eur J Pharmacol ; 862: 172632, 2019 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-31473161

RESUMEN

Significant unmet needs exist for development of better pharmacotherapeutic agents for major depressive disorder (MDD) and post-traumatic stress disorder (PTSD) as the current drugs are inadequate. Our goal in this study is to investigate behavioral pharmacological characterization of a novel triple reuptake inhibitor (TRI) D-578 which exhibits nanomolar potency at all three monoamine transporters (Ki; 16.2. 16.2, 3.23 nM, and 29.6, 20.6, 6.10 nM for the rat brain and cloned human dopamine, serotonin and norepinephrine transporters, respectively) and exhibited little to no affinity for other off-target CNS receptors. In a rat forced swim test, compound D-578 upon oral administration displayed high efficacy and not stimulating in locomotor behavior. The effects of D-578 and paroxetine were next evaluated in a rat model for traumatic stress exposure - the single prolonged stress (SPS) model - which has been shown to have construct, predictive, and behavioral validity in modeling aspects of PTSD. Our results show that SPS had no effect on the acquisition of conditioned fear, but impaired extinction learning and extinction retention of fear behavior compared to sham treatment. D-578, but not paroxetine, attenuated the extinction and extinction-retention deficit induced by SPS. These findings suggest that D-578 has greater efficacy in normalizing traumatic stress-induced extinction-retention learning in a model for PTSD compared to paroxetine. Overall these results suggest that D-578, in addition to producing a robust and efficacious antidepressant effect, may attenuate maladaptive retention of fearful memories and support further testing of this agent for the pharmacotherapy of depression and PTSD.


Asunto(s)
Antidepresivos/farmacología , Trastorno Depresivo Mayor/tratamiento farmacológico , Inhibidores de la Captación de Neurotransmisores/farmacología , Trastornos por Estrés Postraumático/tratamiento farmacológico , Estrés Psicológico/complicaciones , Administración Oral , Animales , Antidepresivos/uso terapéutico , Técnicas de Observación Conductual , Conducta Animal/efectos de los fármacos , Trastorno Depresivo Mayor/etiología , Trastorno Depresivo Mayor/psicología , Modelos Animales de Enfermedad , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/antagonistas & inhibidores , Evaluación Preclínica de Medicamentos , Humanos , Masculino , Inhibidores de la Captación de Neurotransmisores/uso terapéutico , Proteínas de Transporte de Noradrenalina a través de la Membrana Plasmática/antagonistas & inhibidores , Ratas , Retención en Psicología/efectos de los fármacos , Proteínas de Transporte de Serotonina en la Membrana Plasmática/metabolismo , Trastornos por Estrés Postraumático/etiología , Trastornos por Estrés Postraumático/psicología , Estrés Psicológico/psicología
19.
Front Behav Neurosci ; 13: 18, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31114487

RESUMEN

Medial prefrontal cortex (mPFC), amygdala, and striatum neurocircuitry has been shown to play an important role in post-traumatic stress disorder (PTSD) pathology in humans. Clinical studies show hypoactivity in the mPFC and hyperactivity in the amygdala and striatum of PTSD patients, which has been associated with decreased mPFC glutamate levels. The ability to refine neurobiological characteristics of PTSD in an animal model is critical in furthering our mechanistic understanding of the disease. To this end, we exposed male rats to single-prolonged stress (SPS), a validated model of PTSD, and hypothesized that traumatic stress would differentially activate mPFC subregions [prelimbic (PL) and infralimbic (IL) cortices] and increase striatal and amygdalar activity, which would be associated with decreased mPFC glutamate levels. in vivo, neural activity in the subregions of the mPFC, amygdala, and striatum was measured using manganese-enhanced magnetic resonance imaging (MEMRI), and glutamate and N-acetylaspartate (NAA) levels in the mPFC and the dorsal striatum (dSTR) were measured using proton magnetic resonance spectroscopy (1H-MRS) longitudinally, in rats exposed to SPS or control conditions. As hypothesized, SPS decreased MEMRI-based neural activity in the IL, but not PL, cortex concomitantly increasing activity within the basolateral amygdala (BLA) and dorsomedial striatum (dmSTR). 1H-MRS studies in a separate cohort revealed SPS decreased glutamate levels in the mPFC and increased NAA levels in the dSTR. These results confirm previous findings that suggest SPS causes mPFC hypoactivation as well as identifies concurrent hyperactivation in dmSTR and BLA, effects which parallel the clinical neuropathology of PTSD.

20.
Front Behav Neurosci ; 13: 24, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30881293

RESUMEN

Stress exposure can cause lasting changes in cognition, but certain individual traits, such as cognitive flexibility, have been shown to reduce the degree, duration, or severity of cognitive changes following stress. Both stress and cognitive flexibility training affect decision making by modulating monoamine signaling. Here, we test the role cognitive flexibility training, and high vs. low cognitive flexibility at the individual level, in attenuating stress-induced changes in memory and monoamine levels using the single prolonged stress (SPS) rodent model of traumatic stress in male Sprague-Dawley rats. Exposure to SPS can heighten fear responses to conditioned cues (i.e., freezing) after a fear association has been extinguished, referred to as a deficit in extinction retention. This deficit is thought to reflect an impairment in context processing that is characteristic of posttraumatic stress disorder (PTSD). During a cognitive flexibility training we assessed individual variability in cognitive skills and conditioned rats to discriminately use cues in their environment. We found that cognitive flexibility training, alone or followed by SPS exposure, accelerated extinction learning and decreased fear responses over time during extinction retention testing, compared with rats not given cognitive flexibility training. These findings suggest that cognitive flexibility training may improve context processing in individuals with and without traumatic stress exposure. Individual performance during the reversal phase of the cognitive flexibility training predicted subsequent context processing; individuals with high reversal performance exhibited a faster decrease in freezing responses during extinction retention testing. Thus, high reversal performance predicted enhanced retention of extinction learning over time and suggests that cognitive flexibility training may be a strategy to promote context processing. In a brain region vital for maintaining cognitive flexibility and fear suppression, the prelimbic cortex (PLC), cognitive flexibility training also lastingly enhanced dopamine (DA) and norepinephrine (NE) levels, in animals with and without traumatic stress exposure. In contrast, cognitive flexibility training prior to traumatic stress exposure decreased levels of DA and its metabolites in the striatum, a region mediating reflexive decision making. Overall, our results suggest that cognitive flexibility training can provide lasting benefits by enhancing extinction retention, a hallmark cognitive effect of trauma, and prelimbic DA, which can maintain flexibility across changing contexts.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...