Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chemistry ; 27(71): 17889-17899, 2021 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-34761431

RESUMEN

The synergistic functioning of redox-active components that emerges from prototypical 2,2'-di(N-methylpyrid-4-ylium)-1,1'-biphenyl is described. Interestingly, even if a trans conformation of the native assembly is expected, due to electrostatic repulsion between cationic pyridinium units, we demonstrate that cis conformation is equally energy-stabilized on account of a peculiar LUMO (SupLUMO) that develops through space, encompassing the two pyridiniums in a single, made-in-one-piece, electronic entity (superelectrophoric behavior). This SupLUMO emergence, with the cis species as superelectrophore embodiment, originates in a sudden change of electronic structure. This finding is substantiated by insights from solid state (single-crystal X-ray diffraction) and solution (NOE NMR and UV-vis-NIR spectroelectrochemistry) studies, combined with electronic structure computations. Electrochemistry shows that electron transfers are so strongly correlated that two-electron reduction manifests itself as a single-step process with a large potential inversion consistent with inner creation of a carbon-carbon bond (digital simulation). Besides, absence of reductive formation of dimers is a further indication of a preferential intramolecular reactivity determined by the SupLUMO interaction (cis isomer pre-organization). The redox-gated covalent bond, serving as electron reservoir, was studied via atropisomerism of the reduction product (VT NMR study). The overall picture derived from this in-depth study of 2,2'-di(N-methylpyrid-4-ylium)-1,1'-biphenyl proves that trans and cis species are worth considered as intrinsically sharply different, that is, as doubly-electrophoric and singly-superelectrophoric switchable assemblies, beyond conformational isomerism. Most importantly, the through-space-mediated SupLUMO may come in complement of other weak interactions encountered in Supramolecular Chemistry as a tool for the design of electroactive architectures.


Asunto(s)
Electrónica , Cristalografía por Rayos X , Electroquímica , Espectroscopía de Resonancia Magnética , Conformación Molecular
2.
J Am Chem Soc ; 142(11): 5162-5176, 2020 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-32101420

RESUMEN

Molecular-level multielectron handling toward electrical storage is a worthwhile approach to solar energy harvesting. Here, a strategy which uses chemical bonds as electron reservoirs is introduced to demonstrate the new concept of "structronics" (a neologism derived from "structure" and "electronics"). Through this concept, we establish, synthesize, and thoroughly study two multicomponent "super-electrophores": 1,8-dipyridyliumnaphthalene, 2, and its N,N-bridged cyclophane-like analogue, 3. Within both of them, a covalent bond can be formed and subsequently broken electrochemically. These superelectrophores are based on two electrophoric (pyridinium) units that are, on purpose, spatially arranged by a naphthalene scaffold. A key characteristic of 2 and 3 is that they possess a LUMO that develops through space as the result of the interaction between the closely positioned electrophoric units. In the context of electron storage, this "super-LUMO" serves as an empty reservoir, which can be filled by a two-electron reduction, giving rise to an elongated C-C bond or "super-HOMO". Because of its weakened nature, this bond can undergo an electrochemically driven cleavage at a significantly more anodic-yet accessible-potential, thereby restoring the availability of the electron pair (reservoir emptying). In the representative case study of 2, an inversion of potential in both of the two-electron processes of bond formation and bond-cleavage is demonstrated. Overall, the structronic function is characterized by an electrochemical hysteresis and a chemical reversibility. This structronic superelectrophore can be viewed as the three-dimensional counterpart of benchmark methyl viologen (MV).

3.
J Am Chem Soc ; 137(35): 11349-64, 2015 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-26280907

RESUMEN

A combined electrochemical and theoretical study of a series of pyridinium-based electrophores, consisting of reference N-alkyl-2,4,6-triarylpyridiniums (1-3) and N-aryl-expanded pyridiniums (EPs), i.e. N-aryl-2,4,6-triarylpyridiniums (4-10), is presented with the aim of elucidating multifaceted mechanisms underpinning the complex electrophoric activity of fluxional EP systems. Series 1-10 constitutes a library of model electrophores showing an incremental variation of their composition, charge, and steric hindrance. By kinetic mapping of the first two heterogeneous electron transfers (ETs) of 1-10 and computational mapping, at the density functional theory level, of their electronic and geometrical features in various redox states, it is established that, depending on whether EPs are made of one (4, 5) or two "head-to-tail"-connected pyridinium rings (6-10), the nature of the redox-triggered distortions (when allowed) is different, namely, N-pyramidalization due to hybridization change in the former case versus saddle-shaped distortion originating from conflicting intramolecular interactions in the latter case (8-10). When skeletal relaxations are sterically hampered, zwitterionic states and electron delocalization with quinoidal features are promoted as alternative relaxation modes. It follows that "potential compression" is changed to "potential expansion" (i.e., a further separation of redox potentials) in single-pyridinium EPs (4, 5), whereas "potential inversion" (i.e., single-step two-electron transfer; 8-10) is changed to stepwise ETs of the Weitz type for two-pyridinium EPs (6, 7). Overall, kinetic rate constants not only consistently indicate the most prominent mechanistic aspects of the reduction pathways of EPs, but they are also instrumental in establishing EPs as a unique class of electrophores.

4.
Acta Chim Slov ; 61(2): 376-81, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25125121

RESUMEN

In this study an easy strategy for conducting polymer based nanocomposite formation is presented through the deposition of cobalt-ferrite (CoFe(2)O(4)) containing poly(3,4-ethylenedioxythiophene) (PEDOT) thin layers. The electrochemical polymerization has been performed galvanostatically in an aqueous micellar medium in the presence of the nanoparticles and the surface active Triton X-100. The nanoparticles have been characterized by Transmission electron microscopy (TEM), the thin layers has been studied by applying Scanning electron microscopy (SEM), and X-ray diffraction (XRD), and the basic electrochemical properties have been also determined. Moreover, electrocatalytic activity of the composite was demonstrated in the electrooxidation reaction of dopamine (DA). The enhanced sensitivity - related to the cobalt-ferrite content - and the experienced photocatalyitic activity are promising for future application.

5.
J Phys Chem A ; 116(3): 970-8, 2012 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-22175529

RESUMEN

The electrochemical and spectroelectrochemical properties of N,N-diphenyl-1,4-phenylenediamine (PDA) were investigated in the absence and in the presence of 18-crown-6-ether (18C6) or dibenzo 24-crown-8-ether (DB24C8), in a solution of tetrabutylammonium hexafluorophosphate (TBAPF6) in acetonitrile and in the presence of trifluoroacetic acid (TFA) only for 18C6. In neutral acetonitrile, PDA undergoes two reversible oxidation processes, which lead first to the formation of the cation-radical considered as mixed valence (MV) compound, and then to the dicationic species. When 18C6 is added in the medium and depending on 18C6 concentration, cyclic voltammetry shows a marked shift to more cathodic potentials of the current waves of the second redox process only. This is attributed to a strong interaction between the PDA(+2) dication and two 18C6 molecules, leading to the formation of a supramolecular complex with an association constant value K(a) = 7.0 × 10(7) M(-2). The interaction of 18C6 with PDA(+2) dication has a direct effect on the PDA(+.) cation-radical corresponding to a decrease in the lifetime of the MV compound and of the intramolecular electron transfer rate when 18C6 is present. Indeed, it results in a large decrease in the intervalence charge transfer (IV-CT) between the two amine centers in the MV compound (k(th) = 1.35 × 10(10) s(-1) in 18C6-free neutral solution containing 5.0 × 10(-4) M PDA, and k(th) = 3.6 × 10(9) s(-1) in the same medium at [18C6]/[PDA] = 20/1). And the comproportionation constant K(co) falls from 6.0 × 10(6) in 18C6-free solution to 1.6 × 10(3) at [18C6]/[PDA] = 20/1. In acidified acetonitrile and when TFA concentration is increased, PDA still shows the two successive and reversible oxidation processes, but both are shifted to more anodic potentials. However, when 18C6 is added, the two oxidation waves shift to more cathodic potentials, indicating an interaction of all protonated PDA redox states with 18C6, resulting in the formation of supramolecular complexes. In the presence of TFA, the value of K(co) is decreased to 4.3 × 10(4), but it remains unchanged when 18C6 is added, indicating no change in the lifetime of the MV compound. In this medium, IV-CT in the MV compound is greater with 18C6 (k(th) = 2.3 × 10(10) s(-1) for [18C6]/[PDA] = 20/1) than without (k(th) = 1.4 × 10(9) s(-1)), which indicates a more important IV-CT rate when 18C6 is present. The results show for the first time that is it possible to control the IV-CT rate, through the lifetime and the potential range where the MV compound is the most important. This control is not obtained as usual by chemical modification of the structure of the starting molecule, but by varying either the acidity or the 18C6 concentration as external stimuli, which lead to reversible formation/dissociation of a supramolecular complex species. Moreover, we also studied the electrochemical properties of PDA in the presence of wider crown ether such as DB24C8. We showed that PDA undergoes the same electrochemical behavior with DB24C8 than with 18C6 in neutral organic medium (K(a) = 2.9 × 10(3) M(-1)). This result suggests that the complexation between the electrogenerated PDA(+2) dication and the crown ethers may occur through face-to-face mode rather than rotaxane mode even with DB24C8 which is supposed to form inclusion complexes.


Asunto(s)
Acetonitrilos/química , Éteres Corona/química , Fenilendiaminas/química , Electroquímica , Sustancias Macromoleculares/síntesis química , Sustancias Macromoleculares/química , Estructura Molecular , Espectrofotometría Ultravioleta
6.
J Am Chem Soc ; 134(5): 2691-705, 2012 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-22200401

RESUMEN

Contrary to 4,4'-dipyridinium (i.e., archetypal methyl viologen), which is reduced by two single-electron transfers (stepwise reduction), the 4,1'-dipyridinium isomer (so-called "head-to-tail" isomer) undergoes two electron transfers at apparently the same potential (single-step reduction). A combined theoretical and experimental study has been undertaken to establish that the latter electrochemical behavior, also observed for other polyarylpyridinium electrophores, is due to potential compression originating in a large structural rearrangement. Three series of branched expanded pyridiniums (EPs) were prepared: N-aryl-2,4,6-triphenylpyridiniums (Ar-TP), N-aryl-2,3,4,5,6-pentaphenylpyridiniums (Ar-XP), and N-aryl-3,5-dimethyl-2,4,6-triphenylpyridinium (Ar-DMTP). The intramolecular steric strain was tuned via N-pyridinio aryl group (Ar) phenyl (Ph), 4-pyridyl (Py), and 4-pyridylium (qPy) and their bulky 3,5-dimethyl counterparts, xylyl (Xy), lutidyl (Lu), and lutidylium (qLu), respectively. Ferrocenyl subunits as internal redox references were covalently appended to representative electrophores in order to count the electrons involved in EP-centered reduction processes. Depending on the steric constraint around the N-pyridinio site, the two-electron reduction is single-step (Ar = Ph, Py, qPy) or stepwise (Ar = Xy, Lu, qLu). This steric switching of the potential compression is accurately accounted for by ab initio modeling (Density Functional Theory, DFT) that proposes a mechanism for pyramidalization of the N(pyridinio) atom coupled with reduction. When the hybridization change of this atom is hindered (Ar = Xy, Lu, qLu), the first reduction is a one-electron process. Theory also reveals that the single-step two-electron reduction involves couples of redox isomers (electromers) displaying both the axial geometry of native EPs and the pyramidalized geometry of doubly reduced EPs. This picture is confirmed by a combined UV-vis-NIR spectroelectrochemical and time-dependent DFT study: comparison of in situ spectroelectrochemical data with the calculated electronic transitions makes it possible to both evidence the distortion and identify the predicted electromers, which play decisive roles in the electron-transfer mechanism. Last, this mechanism is further supported by in-depth analysis of the electronic structures of electrophores in their various reduction states (including electromeric forms).


Asunto(s)
Electrones , Polímeros/química , Compuestos de Piridinio/química , Estructura Molecular , Oxidación-Reducción
7.
Langmuir ; 21(10): 4686-94, 2005 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-16032890

RESUMEN

This paper reports on the preparation of poly(methyl methacrylate) (PMMA), poly(n-butyl acrylate) (PBA), and polystyrene (PS) brushes at the surface of conducting materials that were modified by the electrochemical reduction of a brominated aryl diazonium salt BF4-, +N2-C6H4-CH(CH3)-Br (D1). The grafted organic species -C6H4-CH(CH3)-Br was found to be very effective in initiating atom transfer radical polymerization (ATRP) of vinyl monomers. This novel approach combining diazonium salts and ATRP allowed PMMA, PBA, and PS brushes to be grown from the surface of iron electrodes. The polymer films were characterized in terms of their chemical structure by infrared reflection absorption spectroscopy and X-ray photoelectron spectroscopy. Atomic force microscopy studies indicated that the polymer brushes are densely packed. Contact angle measurements of water drops on PS and PMMA brushes were 88.1 +/- 2.0 and 70.3 +/- 2.1 degrees, respectively, which is consistent with the published wettability data for the corresponding polymer sheets.

8.
Langmuir ; 20(8): 3350-6, 2004 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-15875868

RESUMEN

Novel ester-functionalized polypyrrole-silica nanocomposite particles were prepared by oxidative copolymerization of pyrrole and N-succinimidyl ester pyrrole (50/50% initial concentrations), using FeCl3 in the presence of ultrafine silica nanoparticles (20 nm diameter). The N-succinimidyl ester pyrrole monomer was prepared in aqueous solution using 1-(2-carboxyethylpyrrole) and N-hydroxysuccinimide in the presence of 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide. The resulting nanocomposites (N-succinimidyl ester polypyrrole-silica) are raspberry-shaped agglomerates of silica sol particles "glued" together by the insoluble poly(pyrrole-co-N-succinimidyl pyrrole). The N-succinimidyl ester polypyrrole-silica particles were characterized in terms of their size, density, copolymer content, and polydispersity. Scanning electron microscopy and disk centrifuge sedimentometry confirmed that the nanocomposite particles had narrow size distributions. X-ray photoelectron spectroscopy analysis indicated a silica-rich surface and a high surface concentration of N-succinimidyl ester groups. These nanoparticles exhibited good long-term dispersion stability. The chemical stability of the ester functions in aqueous media after several weeks of storage was monitored by FTIR spectroscopy. The functionalized nanocomposites were tested as bioadsorbents of human serum albumin (HSA). The very high amount of immobilized HSA determined by UV-visible spectroscopy is believed to be due to covalent binding. Incubation of the HSA-grafted nanocomposite with anti-HSA resulted in immediate flocculation, an indication that they are alternative candidates for visual diagnostic assays.


Asunto(s)
Ésteres/química , Nanoestructuras/química , Polímeros/química , Pirroles/química , Albúmina Sérica/química , Dióxido de Silicio/química , Humanos , Microscopía Electrónica de Rastreo , Estructura Molecular , Dióxido de Silicio/síntesis química , Análisis Espectral , Succinimidas/química
9.
J Colloid Interface Sci ; 257(1): 56-64, 2003 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-16256456

RESUMEN

A range of polyelectrolyte-grafted silica particles have been prepared by grafting suitable initiators onto near-monodisperse, 304-nm-diameter silica particles using siloxane chemistry, followed by surface-initiated atom transfer radical polymerization (ATRP) of four ionic vinyl monomers, namely sodium 4-styrenesulfonate (SStNa), sodium 4-vinylbenzoate (NaVBA), 2-(dimethylamino)ethyl methacrylate (DAM), and 2-(diethylamino)ethyl methacrylate (DEA) in protic media. The resulting polyelectrolyte-grafted silica particles were characterized using dynamic light scattering (DLS), thermogravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), helium pycnometry, and diffuse reflectance infrared Fourier transfer spectroscopy (DRIFTS). The TGA results indicated that the polyelectrolyte contents of the silica particles could be varied from 0.6% to 6.0% in weight. SEM studies revealed several surface morphologies for the grafted polyelectrolytes and XPS analysis of the particle surface also provided good evidence for surface grafting. Combined aqueous electrophoresis and DLS studies confirmed that these polyelectrolyte-grafted silica particles had pH-dependent colloid stabilities, as expected. Cationic polyelectrolyte-grafted silica particles were colloidally stable at low or neutral pH, but became aggregated at high pH. Conversely, anionic polyelectrolyte-coated silica particles became unstable at low pH. It was found that the rate of surface-initiated ATRP was substantially slower than the analogous solution polymerization. Finally, there was some evidence to suggest that, at least in some cases, a significant fraction of polymer chains became detached from the silica particles during polymerization.

10.
J Chromatogr A ; 969(1-2): 167-80, 2002 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-12385389

RESUMEN

Silica-polypyrrole particles have been used as a composite stationary phase for liquid chromatography. Determination of capacity factors (k') of a wide number of polycyclic aromatic hydrocarbon (PAH) molecular probes allows the characterisation of the chromatographic properties of the silica-polypyrrole stationary phase. Capacity factors in the range of 0.10 up to 6.1 were determined, thus demonstrating the high affinity of the PAH probes towards the stationary phase. The selectivity of the composite stationary phase was also evaluated as a function of the planarity of the molecular probes injected. Capacity factors determined for PAHs (two-dimensional molecular probes) are higher than those measured for phenyl-substituted PAHs (phenyl-PAHs, three-dimensional molecular probes). Determination of capacity factors, dependence on the composition of the mobile phase demonstrates the reverse alpha-phase properties of the composite stationary phase. The acid-base properties of the composite silica-polypyrrole stationary phase were investigated using benzene derivative molecular probes (i.e., toluene, phenol, benzoic acid and aniline). Capacity factors in the range of 0.45 to 1.0 were determined. This study clearly demonstrates that this composite stationary phase exhibits selective interactions towards PAHs and phenyl-substituted PAHs and strong acid-base properties depending on the structure, the geometry and the acid-base properties of the molecular probes eluted.


Asunto(s)
Cromatografía Líquida de Alta Presión/métodos , Polímeros/química , Pirroles/química , Dióxido de Silicio/química , Sondas Moleculares , Compuestos Policíclicos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...