Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
JCI Insight ; 6(7)2021 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-33690226

RESUMEN

Liver regeneration is critical to survival after traumatic injuries, exposure to hepatotoxins, or surgical interventions, yet the underlying signaling and metabolic pathways remain unclear. In this study, we show that hepatocyte-specific loss of the mitochondrial deacetylase SIRT3 drastically impairs regeneration and worsens mitochondrial function after partial hepatectomy. Sirtuins, including SIRT3, require NAD as a cosubstrate. We previously showed that the NAD precursor nicotinamide riboside (NR) promotes liver regeneration, but whether this involves sirtuins has not been tested. Here, we show that despite their NAD dependence and critical roles in regeneration, neither SIRT3 nor its nuclear counterpart SIRT1 is required for NR to enhance liver regeneration. NR improves mitochondrial respiration in regenerating WT or mutant livers and rapidly increases oxygen consumption and glucose output in cultured hepatocytes. Our data support a direct enhancement of mitochondrial redox metabolism as the mechanism mediating improved liver regeneration after NAD supplementation and exclude signaling via SIRT1 and SIRT3. Therefore, we provide the first evidence to our knowledge for an essential role for a mitochondrial sirtuin during liver regeneration and insight into the beneficial effects of NR.


Asunto(s)
Regeneración Hepática/fisiología , Mitocondrias Hepáticas/fisiología , Niacinamida/análogos & derivados , Compuestos de Piridinio/farmacología , Sirtuina 3/metabolismo , Animales , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Regeneración Hepática/efectos de los fármacos , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Mitocondrias Hepáticas/efectos de los fármacos , Niacinamida/farmacología , Oxidación-Reducción , Sirtuina 1/genética , Sirtuina 1/metabolismo , Sirtuina 3/genética
2.
Cancer Res ; 81(5): 1252-1264, 2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33414169

RESUMEN

Acetyl-CoA is a vitally important and versatile metabolite used for many cellular processes including fatty acid synthesis, ATP production, and protein acetylation. Recent studies have shown that cancer cells upregulate acetyl-CoA synthetase 2 (ACSS2), an enzyme that converts acetate to acetyl-CoA, in response to stresses such as low nutrient availability and hypoxia. Stressed cancer cells use ACSS2 as a means to exploit acetate as an alternative nutrient source. Genetic depletion of ACSS2 in tumors inhibits the growth of a wide variety of cancers. However, there are no studies on the use of an ACSS2 inhibitor to block tumor growth. In this study, we synthesized a small-molecule inhibitor that acts as a transition-state mimetic to block ACSS2 activity in vitro and in vivo. Pharmacologic inhibition of ACSS2 as a single agent impaired breast tumor growth. Collectively, our findings suggest that targeting ACSS2 may be an effective therapeutic approach for the treatment of patients with breast cancer. SIGNIFICANCE: These findings suggest that targeting acetate metabolism through ACSS2 inhibitors has the potential to safely and effectively treat a wide range of patients with cancer.


Asunto(s)
Acetato CoA Ligasa/antagonistas & inhibidores , Antineoplásicos/farmacología , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Acetato CoA Ligasa/genética , Acetato CoA Ligasa/metabolismo , Animales , Antineoplásicos/química , Línea Celular Tumoral , Ensayos de Selección de Medicamentos Antitumorales/métodos , Estabilidad de Medicamentos , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Ácidos Grasos/metabolismo , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Células HEK293 , Humanos , Ratones Endogámicos , Simulación del Acoplamiento Molecular , Terapia Molecular Dirigida/métodos , Neoplasias de la Mama Triple Negativas/metabolismo , Neoplasias de la Mama Triple Negativas/patología , Ensayos Antitumor por Modelo de Xenoinjerto
3.
Cancer Discov ; 9(12): 1720-1735, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31578185

RESUMEN

Brain metastasis, the most lethal form of melanoma and carcinoma, is the consequence of favorable interactions between the invading cancer cells and the brain cells. Peroxisome proliferator-activated receptor γ (PPARγ) has ambiguous functions in cancer development, and its relevance in advanced brain metastasis remains unclear. Here, we demonstrate that astrocytes, the unique brain glial cells, activate PPARγ in brain metastatic cancer cells. PPARγ activation enhances cell proliferation and metastatic outgrowth in the brain. Mechanistically, astrocytes have a high content of polyunsaturated fatty acids that act as "donors" of PPARγ activators to the invading cancer cells. In clinical samples, PPARγ signaling is significantly higher in brain metastatic lesions. Notably, systemic administration of PPARγ antagonists significantly reduces brain metastatic burden in vivo. Our study clarifies a prometastatic role for PPARγ signaling in cancer metastasis in the lipid-rich brain microenvironment and argues for the use of PPARγ blockade to treat brain metastasis. SIGNIFICANCE: Brain-tropic cancer cells take advantage of the lipid-rich brain microenvironment to facilitate their proliferation by activating PPARγ signaling. This protumor effect of PPARγ in advanced brain metastases is in contrast to its antitumor function in carcinogenesis and early metastatic steps, indicating that PPARγ has diverse functions at different stages of cancer development.This article is highlighted in the In This Issue feature, p. 1631.


Asunto(s)
Astrocitos/metabolismo , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/secundario , Ácidos Grasos Insaturados/metabolismo , PPAR gamma/genética , Animales , Astrocitos/citología , Astrocitos/patología , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Perfilación de la Expresión Génica , Humanos , Ratones , Trasplante de Neoplasias , Transducción de Señal
4.
Proc Natl Acad Sci U S A ; 116(32): 16028-16035, 2019 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-31253706

RESUMEN

Diseases associated with mitochondrial DNA (mtDNA) mutations are highly variable in phenotype, in large part because of differences in the percentage of normal and mutant mtDNAs (heteroplasmy) present within the cell. For example, increasing heteroplasmy levels of the mtDNA tRNALeu(UUR) nucleotide (nt) 3243A > G mutation result successively in diabetes, neuromuscular degenerative disease, and perinatal lethality. These phenotypes are associated with differences in mitochondrial function and nuclear DNA (nDNA) gene expression, which are recapitulated in cybrid cell lines with different percentages of m.3243G mutant mtDNAs. Using metabolic tracing, histone mass spectrometry, and NADH fluorescence lifetime imaging microscopy in these cells, we now show that increasing levels of this single mtDNA mutation cause profound changes in the nuclear epigenome. At high heteroplasmy, mitochondrially derived acetyl-CoA levels decrease causing decreased histone H4 acetylation, with glutamine-derived acetyl-CoA compensating when glucose-derived acetyl-CoA is limiting. In contrast, α-ketoglutarate levels increase at midlevel heteroplasmy and are inversely correlated with histone H3 methylation. Inhibition of mitochondrial protein synthesis induces acetylation and methylation changes, and restoration of mitochondrial function reverses these effects. mtDNA heteroplasmy also affects mitochondrial NAD+/NADH ratio, which correlates with nuclear histone acetylation, whereas nuclear NAD+/NADH ratio correlates with changes in nDNA and mtDNA transcription. Thus, mutations in the mtDNA cause distinct metabolic and epigenomic changes at different heteroplasmy levels, potentially explaining transcriptional and phenotypic variability of mitochondrial disease.


Asunto(s)
Núcleo Celular/genética , ADN Mitocondrial/genética , Epigenoma , Acetilcoenzima A/metabolismo , Línea Celular , Histonas/metabolismo , Humanos , Metaboloma , Mitocondrias/metabolismo , NAD/metabolismo , Transcripción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...