Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
JBMR Plus ; 2(2): 81-91, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30035248

RESUMEN

GATA4 is a zinc-finger transcription factor that is a pioneer factor in various tissues and regulates tissue-specific gene regulation. In vivo deletion of Gata4 using Cre-recombinase under the control of the Col1a1 2.3 kb promoter showed significantly reduced values for trabecular bone properties by microCT analysis of femur and tibia of 14-week-old male and female mice, suggesting GATA4 is necessary for maintaining normal adult bone phenotype. Quantitative PCR analysis revealed higher expression of Gata4 in trabecular bone compared with cortical bone, suggesting a role for GATA4 in maintaining normal trabecular bone mass. In vivo and in vitro, reduction of Gata4 correlates with reduced Runx2 gene expression, along with reduced osteoblast mineralization. To determine if Runx2 is a direct target of GATA4, chromatin immunoprecipitation (ChIP) was performed, and it demonstrated that GATA4 is recruited to the two Runx2 promoters and an enhancer region. Furthermore, when Gata4 is knocked down, the chromatin at the Runx2 region is not open, as detected by DNase assays and ChIP with antibodies to the open chromatin marks H3K4me2 (histone 3 lysine 4 dimethylation) and H3K27ac (histone 3 lysine 27 acetylation) and the closed chromatin mark H3K27me2 (histone 3 lysine 27 trimethylation). Together, the data suggest that GATA4 binds near the Runx2 promoter and enhancer and helps maintain open chromatin to regulate Runx2 expression leading to bone mineralization.

2.
Bone ; 116: 78-86, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30031905

RESUMEN

GATA4 is a transcription factor that is responsible for tissue-specific gene regulation in many tissues, and more recent studies showed that it is necessary for osteoblast differentiation. Previously, we showed that in vivo deletion of Gata4 using Cre-recombinase under the control of the Col1a1 2.3 kb promoter, showed significantly reduced trabecular bone properties. To understand the role of GATA4 in more differentiated cells, GATA4fl/fl mice were crossed with mice expressing Cre-recombinase under the control of the osteocalcin promoter. MicroCT analysis of trabecular bone properties of the femur and tibia from 14-week-old female osteocalcin-Cre/GATA4fl/fl (OCN-cKO) mice showed a significant reduction in percentage bone volume, a decrease in trabecular number and an increase in trabecular spacing. In vivo, histomorphometric analysis revealed a decrease in the number of osteoblasts and an increase in the number of osteoclasts in the tibiae of OCN-cKO mice. In vivo and in vitro systems correlated a decrease in Gata4 mRNA with increased RANKL gene expression. To determine if RANKL is a direct target of GATA4, chromatin immunoprecipitation (ChIP)-sequencing was performed, and it demonstrated that GATA4 is recruited to seven enhancers near RANKL. Furthermore, when Gata4 is knocked down, the chromatin at the RANKL region is further opened, as detected by a reduction in histone 3 lysine 27 trimethylation (H3K27me3) and an increase in histone 3 lysine 4 dimethylation (H3K4me2) in the RANKL locus. In vitro, TRAP staining of cells from bone marrow cultures from Gata4 knockout cells show that the increased levels of RANKL are sufficient for osteoclast formation. Together, the data suggest that GATA4 directly represses RANKL expression via seven cis-regulatory regions and plays an important role in maintaining proper bone development and osteoclast formation.


Asunto(s)
Diferenciación Celular/genética , Elementos de Facilitación Genéticos/genética , Factor de Transcripción GATA4/metabolismo , Osteoblastos/metabolismo , Osteoclastos/citología , Ligando RANK/metabolismo , Proteínas Represoras/metabolismo , Animales , Resorción Ósea/patología , Hueso Esponjoso/citología , Línea Celular Tumoral , Humanos , Ratones Noqueados , Osteoclastos/metabolismo , Osteogénesis , Ligando RANK/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo
3.
Protein Expr Purif ; 141: 1-6, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28843507

RESUMEN

Metal-dependent lysine deacetylases (KDACs) are involved in regulation of numerous biological and disease processes through control of post-translational acetylation. Characterization of KDAC activity and substrate identification is complicated by inconsistent activity of prepared enzyme and a range of multi-step purifications. We describe a simplified protocol based on two-step affinity chromatography. The purification method is appropriate for use regardless of expression host, and we demonstrate purification of several representative members of the KDAC family as well as a selection of mutated variants. The purified proteins are highly active and consistent across preparations.


Asunto(s)
Cobalto/metabolismo , Histona Desacetilasas/aislamiento & purificación , Histona Desacetilasas/metabolismo , Proteínas Represoras/aislamiento & purificación , Proteínas Represoras/metabolismo , Animales , Dicroismo Circular , Cobalto/química , Electroforesis en Gel de Poliacrilamida , Escherichia coli/genética , Histona Desacetilasas/química , Histona Desacetilasas/genética , Humanos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Proteínas Represoras/química , Proteínas Represoras/genética , Células Sf9/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...