Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Am J Physiol Gastrointest Liver Physiol ; 326(2): G107-G119, 2024 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-37987757

RESUMEN

Nucleotides are potent extracellular signaling molecules during homeostasis, infection, and injury due to their ability to activate purinergic receptors. The nucleotide ATP activates P2X receptors (P2RXs), whereas the nucleotides ADP, ATP, UTP, and UDP-glucose selectively activate different P2Y receptors (P2RYs). Several studies have established crucial roles for P2 receptors during intestinal inflammatory and infectious diseases, yet the most extensive characterization of purinergic signaling has focused on immune cells and the central and enteric nervous systems. As epithelial cells serve as the first barrier against irritants and infection, we hypothesized that the gut epithelium may express multiple purinergic receptors that respond to extracellular nucleotide signals. Using the Human Protein Atlas and Gut Cell Survey, we queried single-cell RNA sequencing (RNAseq) data for the P2 purinergic receptors in the small and large intestines. In silico analysis reveals robust mRNA expression of P2RY1, P2RY2, P2RY11, and P2RX4 throughout the gastrointestinal tract. Human intestinal organoids exhibited a similar expression pattern with a prominent expression of P2RY1, P2RY2, and P2RX4, but this purinergic receptor repertoire was not conserved in T84, Caco2, and HT29 intestinal epithelial cell lines. Finally, P2YR1 and P2YR2 agonists elicited robust calcium responses in human intestinal organoids, but calcium responses were weaker or absent in the cell lines. These findings suggest that the gastrointestinal epithelia respond to extracellular purinergic signaling via P2RY1, P2RY2, P2RY11, and P2RX4 receptors and highlight the benefit of using intestinal organoids as a model of intestinal purinergic signaling.NEW & NOTEWORTHY Several studies have revealed crucial roles for P2 receptors during inflammatory and infectious diseases, however, these have largely been demonstrated in immune cells and the enteric nervous system. Although epithelial cells serve as the first barrier against infection and inflammation, the role of purinergic signaling within the gastrointestinal tract remains largely unknown. This work expands our knowledge of purinergic receptor distribution and relative expression along the intestine.


Asunto(s)
Adenosina Trifosfato , Enfermedades Transmisibles , Humanos , Calcio/metabolismo , Células CACO-2 , Nucleótidos , Receptores Purinérgicos , Receptores Purinérgicos P2Y2
2.
mBio ; 15(1): e0214523, 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38112482

RESUMEN

IMPORTANCE: Many viruses exploit host Ca2+ signaling to facilitate their replication; however, little is known about how Ca2+ signals from different host and viral channels contribute to the overall dysregulation of Ca2+ signaling or promote virus replication. Using cells lacking IP3R, a host ER Ca2+ channel, we delineated intracellular Ca2+ signals within virus-infected cells and intercellular Ca2+ waves (ICWs), which increased Ca2+ signaling in neighboring, uninfected cells. In infected cells, IP3R was dispensable for rotavirus-induced Ca2+ signaling and replication, suggesting the rotavirus NSP4 viroporin supplies these signals. However, IP3R-mediated ICWs increase rotavirus replication kinetics and spread, indicating that the Ca2+ signals from the ICWs may prime nearby uninfected cells to better support virus replication upon eventual infection. This "pre-emptive priming" of uninfected cells by exploiting host intercellular pathways in the vicinity of virus-infected cells represents a novel mechanism for viral reprogramming of the host to gain a replication advantage.


Asunto(s)
Señalización del Calcio , Interacciones Microbiota-Huesped , Receptores de Inositol 1,4,5-Trifosfato , Rotavirus , Retículo Endoplásmico/metabolismo , Rotavirus/genética , Rotavirus/metabolismo , Transducción de Señal , Proteínas no Estructurales Virales/genética , Proteínas no Estructurales Virales/metabolismo , Humanos , Receptores de Inositol 1,4,5-Trifosfato/genética , Receptores de Inositol 1,4,5-Trifosfato/metabolismo
3.
bioRxiv ; 2023 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-37609335

RESUMEN

Rotavirus is a leading cause of viral gastroenteritis. A hallmark of rotavirus infection is an increase in cytosolic Ca 2+ caused by the nonstructural protein 4 (NSP4). NSP4 is a viral ion channel that releases Ca 2+ from the endoplasmic reticulum (ER) and the increase in Ca 2+ signaling is critical for rotavirus replication. In addition to NSP4 itself, host inositol 1,4,5- trisphosphate receptor (IP 3 R) ER Ca 2+ channels may contribute to rotavirus-induced Ca 2+ signaling and by extension, virus replication. Thus, we set out to determine the role of IP 3 R Ca 2+ signaling during rotavirus infection using IP 3 R-knockout MA104-GCaMP6s cells (MA104- GCaMP6s-IP 3 R-KO), generated by CRISPR/Cas9 genome editing. Live Ca 2+ imaging showed that IP 3 R-KO did not reduce Ca 2+ signaling in infected cells but eliminated rotavirus-induced intercellular Ca 2+ waves (ICWs) and therefore the increased Ca 2+ signaling in surrounding, uninfected cells. Further, MA104-GCaMP6s-IP 3 R-TKO cells showed similar rotavirus susceptibility, single-cycle replication, and viral protein expression as parental MA104- GCaMP6s cells. However, MA104-GCaMP6s-IP 3 R-TKO cells exhibited significantly smaller rotavirus plaques, decreased multi-round replication kinetics, and delayed virus spread, suggesting that rotavirus-induced ICW Ca 2+ signaling stimulates virus replication and spread. Inhibition of ICWs by blocking the P2Y1 receptor also resulted in decreased rotavirus plaque size. Conversely, exogenous expression of P2Y1 in LLC-MK2-GCaMP6s cells, which natively lack P2Y1 and rotavirus ICWs, rescued the generation of rotavirus-induced ICWs and enabled plaque formation. In conclusion, this study shows that NSP4 Ca 2+ signals fully support rotavirus replication in individual cells; however, IP 3 R is critical for rotavirus-induced ICWs and virus spread by priming Ca 2+ -dependent pathways in surrounding cells. Importance: Many viruses exploit host Ca 2+ signaling to facilitate their replication; however, little is known about how distinct types of Ca 2+ signals contribute to the overall dysregulation of Ca 2+ signaling or promote virus replication. Using cells lacking IP 3 R, a host ER Ca 2+ channel, we could differentiate between intracellular Ca 2+ signals within virus-infected cells and intercellular Ca 2+ waves (ICWs), which increase Ca 2+ signaling in neighboring, uninfected cells. In infected cells, IP 3 R was dispensable for rotavirus-induced Ca 2+ signaling and replication, suggesting the rotavirus NSP4 viroporin supplies these signals. However, IP 3 R-mediated ICWs increase rotavirus replication kinetics and spread, indicating that the Ca 2+ signals from the ICWs may prime nearby uninfected cells to better support virus replication upon eventual infection. This "pre-emptive priming" of uninfected cells by exploiting host intercellular pathways in the vicinity of virus-infected cells represents a novel mechanism for viral reprogramming of the host to gain a replication advantage.

4.
Proc Natl Acad Sci U S A ; 120(2): e2211977120, 2023 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-36595694

RESUMEN

Engineered microbes for the delivery of biologics are a promising avenue for the treatment of various conditions such as chronic inflammatory disorders and metabolic disease. In this study, we developed a genetically engineered probiotic delivery system that delivers a peptide to the intestinal tract with high efficacy. We constructed an inducible system in the probiotic Lactobacillus reuteri to secrete the Kv1.3 potassium blocker ShK-235 (LrS235). We show that LrS235 culture supernatants block Kv1.3 currents and preferentially inhibit human T effector memory (TEM) lymphocyte proliferation in vitro. A single oral gavage of healthy rats with LrS235 resulted in sufficient functional ShK-235 in the circulation to reduce inflammation in a delayed-type hypersensitivity model of atopic dermatitis mediated by TEM cells. Furthermore, the daily oral gavage of LrS235 dramatically reduced clinical signs of disease and joint inflammation in rats with a model of rheumatoid arthritis without eliciting immunogenicity against ShK-235. This work demonstrates the efficacy of using the probiotic L. reuteri as a novel oral delivery platform for the peptide ShK-235 and provides an efficacious strategy to deliver other biologics with great translational potential.


Asunto(s)
Artritis Reumatoide , Probióticos , Ratas , Humanos , Animales , Canal de Potasio Kv1.3/genética , Canal de Potasio Kv1.3/metabolismo , Péptidos/metabolismo , Artritis Reumatoide/tratamiento farmacológico , Inflamación/tratamiento farmacológico , Probióticos/uso terapéutico , Bloqueadores de los Canales de Potasio/farmacología , Bloqueadores de los Canales de Potasio/uso terapéutico
5.
Am J Physiol Gastrointest Liver Physiol ; 324(1): G51-G59, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36414538

RESUMEN

Viruses are among the most prevalent enteric pathogens. Although virologists historically relied on cell lines and animal models, human intestinal organoids (HIOs) continue to grow in popularity. HIOs are nontransformed, stem cell-derived, ex vivo cell cultures that maintain the cell type diversity of the intestinal epithelium. They offer higher throughput than standard animal models while more accurately mimicking the native tissue of infection than transformed cell lines. Here, we review recent literature that highlights virological advances facilitated by HIOs. We discuss the variations and limitations of HIOs, how HIOs have allowed for the cultivation of previously uncultivatable viruses, and how they have offered insight into tropism, entry, replication kinetics, and host-pathogen interactions. In each case, we discuss exemplary viruses and archetypal studies. We discuss how the speed and flexibility of HIO-based studies contributed to our knowledge of SARS-CoV-2 and antiviral therapeutics. Finally, we discuss the current limitations of HIOs and future directions to overcome these.


Asunto(s)
COVID-19 , Animales , Humanos , Diferenciación Celular , SARS-CoV-2 , Intestinos , Mucosa Intestinal/metabolismo , Organoides/metabolismo
6.
Science ; 370(6519)2020 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-33214249

RESUMEN

Rotavirus causes severe diarrheal disease in children by broadly dysregulating intestinal homeostasis. However, the underlying mechanism(s) of rotavirus-induced dysregulation remains unclear. We found that rotavirus-infected cells produce paracrine signals that manifested as intercellular calcium waves (ICWs), observed in cell lines and human intestinal enteroids. Rotavirus ICWs were caused by the release of extracellular adenosine 5'-diphosphate (ADP) that activated P2Y1 purinergic receptors on neighboring cells. ICWs were blocked by P2Y1 antagonists or CRISPR-Cas9 knockout of the P2Y1 receptor. Blocking the ADP signal reduced rotavirus replication, inhibited rotavirus-induced serotonin release and fluid secretion, and reduced diarrhea severity in neonatal mice. Thus, rotavirus exploited paracrine purinergic signaling to generate ICWs that amplified the dysregulation of host cells and altered gastrointestinal physiology to cause diarrhea.


Asunto(s)
Adenosina Difosfato/metabolismo , Señalización del Calcio/fisiología , Calcio/metabolismo , Infecciones por Rotavirus/metabolismo , Rotavirus/fisiología , Animales , Señalización del Calcio/efectos de los fármacos , Señalización del Calcio/genética , Femenino , Células HEK293 , Humanos , Yeyuno/metabolismo , Yeyuno/virología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Comunicación Paracrina , Antagonistas del Receptor Purinérgico P2Y/farmacología , Receptores Purinérgicos P2Y1/genética , Receptores Purinérgicos P2Y1/metabolismo
7.
Gut Microbes ; 11(5): 1324-1347, 2020 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-32404017

RESUMEN

Multiple studies have identified changes within the gut microbiome in response to diarrheal-inducing bacterial pathogens. However, examination of the microbiome in response to viral pathogens remains understudied. Compounding this, many studies use fecal samples to assess microbiome composition; which may not accurately mirror changes within the small intestine, the primary site for most enteric virus infections. As a result, the functional significance of small intestinal microbiome shifts during infection is not well defined. To address these gaps, rotavirus-infected neonatal mice were examined for changes in bacterial community dynamics, host gene expression, and tissue recovery during infection. Profiling bacterial communities using 16S rRNA sequencing suggested significant and distinct changes in ileal communities in response to rotavirus infection, with no significant changes for other gastrointestinal (GI) compartments. At 1-d post-infection, we observed a loss in Lactobacillus species from the ileum, but an increase in Bacteroides and Akkermansia, both of which exhibit mucin-digesting capabilities. Concomitant with the bacterial community shifts, we observed a loss of mucin-filled goblet cells in the small intestine at d 1, with recovery occurring by d 3. Rotavirus infection of mucin-producing cell lines and human intestinal enteroids (HIEs) stimulated release of stored mucin granules, similar to in vivo findings. In vitro, incubation of mucins with Bacteroides or Akkermansia members resulted in significant glycan degradation, which altered the binding capacity of rotavirus in silico and in vitro. Taken together, these data suggest that the response to and recovery from rotavirus-diarrhea is unique between sub-compartments of the GI tract and may be influenced by mucin-degrading microbes.


Asunto(s)
Microbioma Gastrointestinal , Íleon/microbiología , Polisacáridos/metabolismo , Infecciones por Rotavirus/patología , Infecciones por Rotavirus/virología , Rotavirus/patogenicidad , Akkermansia/crecimiento & desarrollo , Akkermansia/metabolismo , Animales , Animales Recién Nacidos , Bacterias/clasificación , Bacterias/crecimiento & desarrollo , Bacteroides/crecimiento & desarrollo , Bacteroides/metabolismo , Células Caliciformes/fisiología , Íleon/patología , Intestino Delgado/microbiología , Intestino Delgado/patología , Lactobacillus/crecimiento & desarrollo , Ratones , Ratones Endogámicos BALB C , Mucinas/metabolismo , ARN Ribosómico 16S/genética , Infecciones por Rotavirus/microbiología , Virulencia
8.
J Virol ; 93(24)2019 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-31597761

RESUMEN

Rotavirus is a segmented double-stranded RNA (dsRNA) virus that causes severe gastroenteritis in young children. We have established an efficient simplified rotavirus reverse genetics (RG) system that uses 11 T7 plasmids, each expressing a unique simian SA11 (+)RNA, and a cytomegalovirus support plasmid for the African swine fever virus NP868R capping enzyme. With the NP868R-based system, we generated recombinant rotavirus (rSA11/NSP3-FL-UnaG) with a genetically modified 1.5-kb segment 7 dsRNA encoding full-length nonstructural protein 3 (NSP3) fused to UnaG, a 139-amino-acid green fluorescent protein (FP). Analysis of rSA11/NSP3-FL-UnaG showed that the virus replicated efficiently and was genetically stable over 10 rounds of serial passaging. The NSP3-UnaG fusion product was well expressed in rSA11/NSP3-FL-UnaG-infected cells, reaching levels similar to NSP3 levels in wild-type recombinant SA11-infected cells. Moreover, the NSP3-UnaG protein, like functional wild-type NSP3, formed dimers in vivo Notably, the NSP3-UnaG protein was readily detected in infected cells via live-cell imaging, with intensity levels ∼3-fold greater than those of the NSP1-UnaG fusion product of rSA11/NSP1-FL-UnaG. Our results indicate that FP-expressing recombinant rotaviruses can be made through manipulation of the segment 7 dsRNA without deletion or interruption of any of the 12 open reading frames (ORFs) of the virus. Because NSP3 is expressed at higher levels than NSP1 in infected cells, rotaviruses expressing NSP3-based FPs may be more sensitive tools for studying rotavirus biology than rotaviruses expressing NSP1-based FPs. This is the first report of a recombinant rotavirus containing a genetically engineered segment 7 dsRNA.IMPORTANCE Previous studies generated recombinant rotaviruses that express FPs by inserting reporter genes into the NSP1 ORF of genome segment 5. Unfortunately, NSP1 is expressed at low levels in infected cells, making viruses expressing FP-fused NSP1 less than ideal probes of rotavirus biology. Moreover, FPs were inserted into segment 5 in such a way as to compromise NSP1, an interferon antagonist affecting viral growth and pathogenesis. We have identified an alternative approach for generating rotaviruses expressing FPs, one relying on fusing the reporter gene to the NSP3 ORF of genome segment 7. This was accomplished without interrupting any of the viral ORFs, yielding recombinant viruses that likely express the complete set of functional viral proteins. Given that NSP3 is made at moderate levels in infected cells, rotaviruses encoding NSP3-based FPs should be more sensitive probes of viral infection than rotaviruses encoding NSP1-based FPs.


Asunto(s)
Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Genética Inversa/métodos , Rotavirus/genética , Proteínas no Estructurales Virales/genética , Proteínas no Estructurales Virales/metabolismo , Animales , Línea Celular , Regulación Viral de la Expresión Génica , Genes Reporteros , Genes Virales , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Modelos Moleculares , Sistemas de Lectura Abierta , Plásmidos , ARN Bicatenario/genética , ARN Viral/genética , Infecciones por Rotavirus/virología , Replicación Viral
9.
mSphere ; 4(5)2019 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-31533997

RESUMEN

Enteric viruses in the Caliciviridae family cause acute gastroenteritis in humans and animals, but the cellular processes needed for virus replication and disease remain unknown. A common strategy among enteric viruses, including rotaviruses and enteroviruses, is to encode a viral ion channel (i.e., viroporin) that is targeted to the endoplasmic reticulum (ER) and disrupts host calcium (Ca2+) homeostasis. Previous reports have demonstrated genetic and functional similarities between the nonstructural proteins of caliciviruses and enteroviruses, including the calicivirus NS1-2 protein and the 2B viroporin of enteroviruses. However, it is unknown whether caliciviruses alter Ca2+ homeostasis for virus replication or whether the NS1-2 protein has viroporin activity like its enterovirus counterpart. To address these questions, we used Tulane virus (TV), a rhesus enteric calicivirus, to examine Ca2+ signaling during infection and determine whether NS1-2 has viroporin activity that disrupts Ca2+ homeostasis. We found that TV increases Ca2+ signaling during infection and that increased cytoplasmic Ca2+ levels are important for efficient replication. Further, TV NS1-2 localizes to the endoplasmic reticulum, the predominant intracellular Ca2+ store, and the NS2 region has characteristics of a viroporin domain (VPD). NS1-2 had viroporin activity in a classic bacterial functional assay and caused aberrant Ca2+ signaling when expressed in mammalian cells, but truncation of the VPD abrogated these activities. Together, our data provide new mechanistic insights into the function of the NS2 region of NS1-2 and support the premise that enteric viruses, including those within Caliciviridae, exploit host Ca2+ signaling to facilitate their replication.IMPORTANCE Tulane virus is one of many enteric caliciviruses that cause acute gastroenteritis and diarrheal disease. Globally, enteric caliciviruses affect both humans and animals and amass >65 billion dollars per year in treatment and health care-associated costs, thus imposing an enormous economic burden. Recent progress has resulted in several cultivation systems (B cells, enteroids, and zebrafish larvae) to study human noroviruses, but mechanistic insights into the viral factors and host pathways important for enteric calicivirus replication and infection are still largely lacking. Here, we used Tulane virus, a calicivirus that is biologically similar to human noroviruses and can be cultivated by conventional cell culture, to identify and functionally validate NS1-2 as an enteric calicivirus viroporin. Viroporin-mediated calcium signaling may be a broadly utilized pathway for enteric virus replication, and its existence within caliciviruses provides a novel approach to developing antivirals and comprehensive therapeutics for enteric calicivirus diarrheal disease outbreaks.


Asunto(s)
Señalización del Calcio , Caliciviridae/patogenicidad , Canales Iónicos/metabolismo , Proteínas no Estructurales Virales/metabolismo , Replicación Viral , Animales , Calcio/metabolismo , Caliciviridae/química , Línea Celular , Homeostasis , Interacciones Microbiota-Huesped , Canales Iónicos/genética , Macaca mulatta , Proteínas no Estructurales Virales/genética
10.
Sci Rep ; 9(1): 10822, 2019 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-31346185

RESUMEN

Like many viruses, rotavirus (RV) dysregulates calcium homeostasis by elevating cytosolic calcium ([Ca2+]cyt) and decreasing endoplasmic reticulum (ER) stores. While an overall, monophasic increase in [Ca2+]cyt during RV infection has been shown, the nature of the RV-induced aberrant calcium signals and how they manifest over time at the single-cell level have not been characterized. Thus, we generated cell lines and human intestinal enteroids (HIEs) stably expressing cytosolic and/or ER-targeted genetically-encoded calcium indicators to characterize calcium signaling throughout RV infection by time-lapse imaging. We found that RV induces highly dynamic [Ca2+]cyt signaling that manifest as hundreds of discrete [Ca2+]cyt spikes, which increase during peak infection. Knockdown of nonstructural protein 4 (NSP4) attenuates the [Ca2+]cyt spikes, consistent with its role in dysregulating calcium homeostasis. RV-induced [Ca2+]cyt spikes were primarily from ER calcium release and were attenuated by inhibiting the store-operated calcium entry (SOCE) channel Orai1. RV-infected HIEs also exhibited prominent [Ca2+]cyt spikes that were attenuated by inhibiting SOCE, underlining the relevance of these [Ca2+]cyt spikes to gastrointestinal physiology and role of SOCE in RV pathophysiology. Thus, our discovery that RV increases [Ca2+]cyt by dynamic calcium signaling, establishes a new, paradigm-shifting understanding of the spatial and temporal complexity of virus-induced calcium signaling.


Asunto(s)
Señalización del Calcio/fisiología , Calcio/metabolismo , Citoplasma/metabolismo , Retículo Endoplásmico/metabolismo , Infecciones por Rotavirus/metabolismo , Rotavirus/metabolismo , Línea Celular , Humanos
11.
Sci Rep ; 7: 43487, 2017 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-28256607

RESUMEN

Viroporins are small virus-encoded ion channel proteins. Most viroporins are monovalent selective cation channels, with few showing the ability to conduct divalent cations, like calcium (Ca2+). Nevertheless, some viroporins are known to disrupt host cell Ca2+ homeostasis, which is critical for virus replication and pathogenesis. Rotavirus nonstructural protein 4 (NSP4) is an endoplasmic reticulum transmembrane glycoprotein that has a viroporin domain (VPD), and NSP4 viroporin activity elevates cytosolic Ca2+ in mammalian cells. The goal of this study was to demonstrate that the NSP4 VPD forms an ion channel and determine whether the channel can conduct Ca2+. Using planar lipid bilayer and liposome patch clamp electrophysiology, we show that a synthetic peptide of the NSP4 VPD has ion channel activity. The NSP4 VPD was selective for cations over anions and channel activity was observed to have both well-defined "square top" openings as well as fast current fluctuations, similar to other viroporins. Importantly, the NSP4 VPD showed similar conductance of divalent cations (Ca2+ and Ba2+) as monovalent cations (K+), but a viroporin defective mutant lacked Ca2+ conductivity. These data demonstrate that the NSP4 VPD is a Ca2+-conducting viroporin and establish the mechanism by which NSP4 disturbs host cell Ca2+ homeostasis.


Asunto(s)
Bario/metabolismo , Canales de Calcio/metabolismo , Calcio/metabolismo , Glicoproteínas/metabolismo , Péptidos/metabolismo , Proteolípidos/metabolismo , Toxinas Biológicas/metabolismo , Proteínas no Estructurales Virales/metabolismo , Secuencia de Aminoácidos , Bario/química , Calcio/química , Canales de Calcio/química , Canales de Calcio/genética , Colesterol/química , Colesterol/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Glicoproteínas/química , Glicoproteínas/genética , Transporte Iónico , Potenciales de la Membrana/fisiología , Mutación , Técnicas de Placa-Clamp , Péptidos/química , Péptidos/genética , Fosfatidilcolinas/química , Fosfatidilcolinas/metabolismo , Proteolípidos/química , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Rotavirus/química , Rotavirus/metabolismo , Relación Estructura-Actividad , Toxinas Biológicas/química , Toxinas Biológicas/genética , Liposomas Unilamelares/química , Liposomas Unilamelares/metabolismo , Proteínas no Estructurales Virales/química , Proteínas no Estructurales Virales/genética
12.
Methods ; 90: 28-38, 2015 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-26344758

RESUMEN

Calcium signaling is a ubiquitous and versatile process involved in nearly every cellular process, and exploitation of host calcium signals is a common strategy used by viruses to facilitate replication and cause disease. Small molecule fluorescent calcium dyes have been used by many to examine changes in host cell calcium signaling and calcium channel activation during virus infections, but disadvantages of these dyes, including poor loading and poor long-term retention, complicate analysis of calcium imaging in virus-infected cells due to changes in cell physiology and membrane integrity. The recent expansion of genetically-encoded calcium indicators (GECIs), including blue and red-shifted color variants and variants with calcium affinities appropriate for calcium storage organelles like the endoplasmic reticulum (ER), make the use of GECIs an attractive alternative for calcium imaging in the context of virus infections. Here we describe the development and testing of cell lines stably expressing both green cytoplasmic (GCaMP5G and GCaMP6s) and red ER-targeted (RCEPIAer) GECIs. Using three viruses (rotavirus, poliovirus and respiratory syncytial virus) previously shown to disrupt host calcium homeostasis, we show the GECI cell lines can be used to detect simultaneous cytoplasmic and ER calcium signals. Further, we demonstrate the GECI expression has sufficient stability to enable long-term confocal imaging of both cytoplasmic and ER calcium during the course of virus infections.


Asunto(s)
Señalización del Calcio , Calcio/análisis , Interacciones Huésped-Patógeno , Microscopía Fluorescente/métodos , Animales , Línea Celular , Chlorocebus aethiops , Retículo Endoplásmico/metabolismo , Células HEK293 , Humanos , Indicadores y Reactivos/química , Poliovirus/metabolismo , Virus Sincitiales Respiratorios/metabolismo , Rotavirus/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...