Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 140
Filtrar
1.
medRxiv ; 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38633783

RESUMEN

Investigating the genetic factors influencing human birth weight may lead to biological insights into fetal growth and long-term health. Genome-wide association studies of birth weight have highlighted associated variants in more than 200 regions of the genome, but the causal genes are mostly unknown. Rare genetic variants with robust evidence of association are more likely to point to causal genes, but to date, only a few rare variants are known to influence birth weight. We aimed to identify genes that harbour rare variants that impact birth weight when carried by either the fetus or the mother, by analysing whole exome sequence data in UK Biobank participants. We annotated rare (minor allele frequency <0.1%) protein-truncating or high impact missense variants on whole exome sequence data in up to 234,675 participants with data on their own birth weight (fetal variants), and up to 181,883 mothers who reported the birth weight of their first child (maternal variants). Variants within each gene were collapsed to perform gene burden tests and for each associated gene, we compared the observed fetal and maternal effects. We identified 8 genes with evidence of rare fetal variant effects on birth weight, of which 2 also showed maternal effects. One additional gene showed evidence of maternal effects only. We observed 10/11 directionally concordant associations in an independent sample of up to 45,622 individuals (sign test P=0.01). Of the genes identified, IGF1R and PAPPA2 (fetal and maternal-acting) have known roles in insulin-like growth factor bioavailability and signalling. PPARG, INHBE and ACVR1C (all fetal-acting) have known roles in adipose tissue regulation and rare variants in the latter two also showed associations with favourable adiposity patterns in adults. We highlight the dual role of PPARG in both adipocyte differentiation and placental angiogenesis. NOS3, NRK, and ADAMTS8 (fetal and maternal-acting) have been implicated in both placental function and hypertension. Analysis of rare coding variants has identified regulators of fetal adipose tissue and fetoplacental angiogenesis as determinants of birth weight, as well as further evidence for the role of insulin-like growth factors.

2.
Cell Metab ; 36(5): 1076-1087.e4, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38653246

RESUMEN

Approximately 1 in 4 people worldwide have non-alcoholic fatty liver disease (NAFLD); however, there are currently no medications to treat this condition. This study investigated the role of adiposity-associated orphan G protein-coupled receptor 75 (GPR75) in liver lipid accumulation. We profiled Gpr75 expression and report that it is most abundant in the brain. Next, we generated the first single-cell-level analysis of Gpr75 and identified a subpopulation co-expressed with key appetite-regulating hypothalamic neurons. CRISPR-Cas9-deleted Gpr75 mice fed a palatable western diet high in fat adjusted caloric intake to remain in energy balance, thereby preventing NAFLD. Consistent with mouse results, analysis of whole-exome sequencing data from 428,719 individuals (UK Biobank) revealed that variants in GPR75 are associated with a reduced likelihood of hepatic steatosis. Here, we provide a significant advance in understanding of the expression and function of GPR75, demonstrating that it is a promising pharmaceutical target for NAFLD treatment.


Asunto(s)
Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico , Receptores Acoplados a Proteínas G , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética , Animales , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/genética , Ratones , Humanos , Masculino , Tejido Adiposo/metabolismo , Ratones Noqueados , Hígado/metabolismo , Femenino , Adiposidad
3.
Nat Genet ; 56(4): 579-584, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38575728

RESUMEN

Obesity is a major risk factor for many common diseases and has a substantial heritable component. To identify new genetic determinants, we performed exome-sequence analyses for adult body mass index (BMI) in up to 587,027 individuals. We identified rare loss-of-function variants in two genes (BSN and APBA1) with effects substantially larger than those of well-established obesity genes such as MC4R. In contrast to most other obesity-related genes, rare variants in BSN and APBA1 were not associated with normal variation in childhood adiposity. Furthermore, BSN protein-truncating variants (PTVs) magnified the influence of common genetic variants associated with BMI, with a common variant polygenic score exhibiting an effect twice as large in BSN PTV carriers than in noncarriers. Finally, we explored the plasma proteomic signatures of BSN PTV carriers as well as the functional consequences of BSN deletion in human induced pluripotent stem cell-derived hypothalamic neurons. Collectively, our findings implicate degenerative processes in synaptic function in the etiology of adult-onset obesity.


Asunto(s)
Diabetes Mellitus Tipo 2 , Células Madre Pluripotentes Inducidas , Hepatopatías , Adulto , Humanos , Diabetes Mellitus Tipo 2/genética , Proteómica , Obesidad/complicaciones , Obesidad/genética , Predisposición Genética a la Enfermedad , Proteínas del Tejido Nervioso/genética , Proteínas Adaptadoras Transductoras de Señales/genética
4.
Commun Biol ; 7(1): 47, 2024 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-38184718

RESUMEN

Age at menarche (AAM) and age at natural menopause (ANM) are highly heritable traits and have been linked to various health outcomes. We aimed to identify circulating proteins associated with altered ANM and AAM using an unbiased two-sample Mendelian randomization (MR) and colocalization approach. By testing causal effects of 1,271 proteins on AAM, we identified 22 proteins causally associated with AAM in MR, among which 13 proteins (GCKR, FOXO3, SEMA3G, PATE4, AZGP1, NEGR1, LHB, DLK1, ANXA2, YWHAB, DNAJB12, RMDN1 and HPGDS) colocalized. Among 1,349 proteins tested for causal association with ANM using MR, we identified 19 causal proteins among which 7 proteins (CPNE1, TYMP, DNER, ADAMTS13, LCT, ARL and PLXNA1) colocalized. Follow-up pathway and gene enrichment analyses demonstrated links between AAM-related proteins and obesity and diabetes, and between AAM and ANM-related proteins and various types of cancer. In conclusion, we identified proteomic signatures of reproductive ageing in women, highlighting biological processes at both ends of the reproductive lifespan.


Asunto(s)
Menarquia , Análisis de la Aleatorización Mendeliana , Humanos , Femenino , Menarquia/genética , Proteómica , Biomarcadores , Menopausia/genética , Proteínas del Choque Térmico HSP40
5.
Nat Rev Endocrinol ; 20(2): 111-123, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38049643

RESUMEN

An individual's nutritional status has a powerful effect on sexual maturation. Puberty onset is delayed in response to chronic energy insufficiency and is advanced under energy abundance. The consequences of altered pubertal timing for human health are profound. Late puberty increases the chances of cardiometabolic, musculoskeletal and neurocognitive disorders, whereas early puberty is associated with increased risks of adult obesity, type 2 diabetes mellitus, cardiovascular diseases and various cancers, such as breast, endometrial and prostate cancer. Kennedy and Mitra's trailblazing studies, published in 1963 and using experimental models, were the first to demonstrate that nutrition is a key factor in puberty onset. Building on this work, the field has advanced substantially in the past decade, which is largely due to the impressive development of molecular tools for experimentation and population genetics. In this Review, we discuss the latest advances in basic and translational sciences underlying the nutritional and metabolic control of pubertal development, with a focus on perspectives and future directions.


Asunto(s)
Diabetes Mellitus Tipo 2 , Neoplasias de la Próstata , Masculino , Adulto , Humanos , Diabetes Mellitus Tipo 2/genética , Pubertad/fisiología , Maduración Sexual/fisiología , Obesidad/genética
6.
Hum Reprod ; 39(1): 240-257, 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-38052102

RESUMEN

STUDY QUESTION: Which genetic factors regulate female propensity for giving birth to spontaneous dizygotic (DZ) twins? SUMMARY ANSWER: We identified four new loci, GNRH1, FSHR, ZFPM1, and IPO8, in addition to previously identified loci, FSHB and SMAD3. WHAT IS KNOWN ALREADY: The propensity to give birth to DZ twins runs in families. Earlier, we reported that FSHB and SMAD3 as associated with DZ twinning and female fertility measures. STUDY DESIGN, SIZE, DURATION: We conducted a genome-wide association meta-analysis (GWAMA) of mothers of spontaneous dizygotic (DZ) twins (8265 cases, 264 567 controls) and of independent DZ twin offspring (26 252 cases, 417 433 controls). PARTICIPANTS/MATERIALS, SETTING, METHODS: Over 700 000 mothers of DZ twins, twin individuals and singletons from large cohorts in Australia/New Zealand, Europe, and the USA were carefully screened to exclude twins born after use of ARTs. Genetic association analyses by cohort were followed by meta-analysis, phenome wide association studies (PheWAS), in silico and in vivo annotations, and Zebrafish functional validation. MAIN RESULTS AND THE ROLE OF CHANCE: This study enlarges the sample size considerably from previous efforts, finding four genome-wide significant loci, including two novel signals and a further two novel genes that are implicated by gene level enrichment analyses. The novel loci, GNRH1 and FSHR, have well-established roles in female reproduction whereas ZFPM1 and IPO8 have not previously been implicated in female fertility. We found significant genetic correlations with multiple aspects of female reproduction and body size as well as evidence for significant selection against DZ twinning during human evolution. The 26 top single nucleotide polymorphisms (SNPs) from our GWAMA in European-origin participants weakly predicted the crude twinning rates in 47 non-European populations (r = 0.23 between risk score and population prevalence, s.e. 0.11, 1-tail P = 0.058) indicating that genome-wide association studies (GWAS) are needed in African and Asian populations to explore the causes of their respectively high and low DZ twinning rates. In vivo functional tests in zebrafish for IPO8 validated its essential role in female, but not male, fertility. In most regions, risk SNPs linked to known expression quantitative trait loci (eQTLs). Top SNPs were associated with in vivo reproductive hormone levels with the top pathways including hormone ligand binding receptors and the ovulation cycle. LARGE SCALE DATA: The full DZT GWAS summary statistics will made available after publication through the GWAS catalog (https://www.ebi.ac.uk/gwas/). LIMITATIONS, REASONS FOR CAUTION: Our study only included European ancestry cohorts. Inclusion of data from Africa (with the highest twining rate) and Asia (with the lowest rate) would illuminate further the biology of twinning and female fertility. WIDER IMPLICATIONS OF THE FINDINGS: About one in 40 babies born in the world is a twin and there is much speculation on why twinning runs in families. We hope our results will inform investigations of ovarian response in new and existing ARTs and the causes of female infertility. STUDY FUNDING/COMPETING INTEREST(S): Support for the Netherlands Twin Register came from the Netherlands Organization for Scientific Research (NWO) and The Netherlands Organization for Health Research and Development (ZonMW) grants, 904-61-193, 480-04-004, 400-05-717, Addiction-31160008, 911-09-032, Biobanking and Biomolecular Resources Research Infrastructure (BBMRI.NL, 184.021.007), Royal Netherlands Academy of Science Professor Award (PAH/6635) to DIB, European Research Council (ERC-230374), Rutgers University Cell and DNA Repository (NIMH U24 MH068457-06), the Avera Institute, Sioux Falls, South Dakota (USA) and the National Institutes of Health (NIH R01 HD042157-01A1) and the Genetic Association Information Network (GAIN) of the Foundation for the National Institutes of Health and Grand Opportunity grants 1RC2 MH089951. The QIMR Berghofer Medical Research Institute (QIMR) study was supported by grants from the National Health and Medical Research Council (NHMRC) of Australia (241944, 339462, 389927, 389875, 389891, 389892, 389938, 443036, 442915, 442981, 496610, 496739, 552485, 552498, 1050208, 1075175). L.Y. is funded by Australian Research Council (Grant number DE200100425). The Minnesota Center for Twin and Family Research (MCTFR) was supported in part by USPHS Grants from the National Institute on Alcohol Abuse and Alcoholism (AA09367 and AA11886) and the National Institute on Drug Abuse (DA05147, DA13240, and DA024417). The Women's Genome Health Study (WGHS) was funded by the National Heart, Lung, and Blood Institute (HL043851 and HL080467) and the National Cancer Institute (CA047988 and UM1CA182913), with support for genotyping provided by Amgen. Data collection in the Finnish Twin Registry has been supported by the Wellcome Trust Sanger Institute, the Broad Institute, ENGAGE-European Network for Genetic and Genomic Epidemiology, FP7-HEALTH-F4-2007, grant agreement number 201413, National Institute of Alcohol Abuse and Alcoholism (grants AA-12502, AA-00145, AA-09203, AA15416, and K02AA018755) and the Academy of Finland (grants 100499, 205585, 118555, 141054, 264146, 308248, 312073 and 336823 to J. Kaprio). TwinsUK is funded by the Wellcome Trust, Medical Research Council, Versus Arthritis, European Union Horizon 2020, Chronic Disease Research Foundation (CDRF), Zoe Ltd and the National Institute for Health Research (NIHR) Clinical Research Network (CRN) and Biomedical Research Centre based at Guy's and St Thomas' NHS Foundation Trust in partnership with King's College London. For NESDA, funding was obtained from the Netherlands Organization for Scientific Research (Geestkracht program grant 10000-1002), the Center for Medical Systems Biology (CSMB, NVVO Genomics), Biobanking and Biomolecular Resources Research Infrastructure (BBMRI-NL), VU University's Institutes for Health and Care Research (EMGO+) and Neuroscience Campus Amsterdam, University Medical Center Groningen, Leiden University Medical Center, National Institutes of Health (NIH, ROI D0042157-01A, MH081802, Grand Opportunity grants 1 RC2 Ml-1089951 and IRC2 MH089995). Part of the genotyping and analyses were funded by the Genetic Association Information Network (GAIN) of the Foundation for the National Institutes of Health. Computing was supported by BiG Grid, the Dutch e-Science Grid, which is financially supported by NWO. Work in the Del Bene lab was supported by the Programme Investissements d'Avenir IHU FOReSIGHT (ANR-18-IAHU-01). C.R. was supported by an EU Horizon 2020 Marie Sklodowska-Curie Action fellowship (H2020-MSCA-IF-2014 #661527). H.S. and K.S. are employees of deCODE Genetics/Amgen. The other authors declare no competing financial interests. TRIAL REGISTRATION NUMBER: N/A.


Asunto(s)
Fertilidad , Estudio de Asociación del Genoma Completo , Gemelación Dicigótica , Animales , Femenino , Humanos , Embarazo , Proteínas Portadoras/genética , Fertilidad/genética , Hormonas , Proteínas/genética , Estados Unidos , Pez Cebra/genética
7.
Nat Commun ; 14(1): 7702, 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-38057330

RESUMEN

Loss-of-function of DDX3X is a leading cause of neurodevelopmental disorders (NDD) in females. DDX3X is also a somatically mutated cancer driver gene proposed to have tumour promoting and suppressing effects. We perform saturation genome editing of DDX3X, testing in vitro the functional impact of 12,776 nucleotide variants. We identify 3432 functionally abnormal variants, in three distinct classes. We train a machine learning classifier to identify functionally abnormal variants of NDD-relevance. This classifier has at least 97% sensitivity and 99% specificity to detect variants pathogenic for NDD, substantially out-performing in silico predictors, and resolving up to 93% of variants of uncertain significance. Moreover, functionally-abnormal variants can account for almost all of the excess nonsynonymous DDX3X somatic mutations seen in DDX3X-driven cancers. Systematic maps of variant effects generated in experimentally tractable cell types have the potential to transform clinical interpretation of both germline and somatic disease-associated variation.


Asunto(s)
Neoplasias , Trastornos del Neurodesarrollo , Femenino , Humanos , Edición Génica , Virulencia , Trastornos del Neurodesarrollo/genética , Neoplasias/genética , Células Germinativas , Mutación de Línea Germinal , ARN Helicasas DEAD-box/genética
9.
Nat Commun ; 14(1): 5536, 2023 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-37684235

RESUMEN

Clonal hematopoiesis (CH)-age-related expansion of mutated hematopoietic clones-can differ in frequency and cellular fitness by CH type (e.g., mutations in driver genes (CHIP), gains/losses and copy-neutral loss of chromosomal segments (mCAs), and loss of sex chromosomes). Co-occurring CH raises questions as to their origin, selection, and impact. We integrate sequence and genotype array data in up to 482,378 UK Biobank participants to demonstrate shared genetic architecture across CH types. Our analysis suggests a cellular evolutionary trade-off between different types of CH, with LOY occurring at lower rates in individuals carrying mutations in established CHIP genes. We observed co-occurrence of CHIP and mCAs with overlap at TET2, DNMT3A, and JAK2, in which CHIP precedes mCA acquisition. Furthermore, individuals carrying overlapping CH had high risk of future lymphoid and myeloid malignancies. Finally, we leverage shared genetic architecture of CH traits to identify 15 novel loci associated with leukemia risk.


Asunto(s)
Evolución Biológica , Hematopoyesis Clonal , Humanos , Hematopoyesis Clonal/genética , Genotipo , Células Clonales , Metilasas de Modificación del ADN
10.
Cell Genom ; 3(8): 100362, 2023 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-37601970

RESUMEN

Obesity contributes substantially to the global burden of disease and has a significant heritable component. Recent large-scale exome sequencing studies identified several genes in which rare, protein-coding variants have large effects on adult body mass index (BMI). Here we extended such work by performing sex-stratified associations in the UK Biobank study (N∼420,000). We identified genes in which rare heterozygous loss-of-function increases adult BMI in women (DIDO1, PTPRG, and SLC12A5) and in men (SLTM), with effect sizes up to ∼8 kg/m2. This is complemented by analyses implicating rare variants in OBSCN and MADD for recalled childhood adiposity. The known functions of these genes, as well as findings of common variant genome-wide pathway enrichment analyses, suggest a role for neuron death, apoptosis, and DNA damage response mechanisms in the susceptibility to obesity across the life-course. These findings highlight the importance of considering sex-specific and life-course effects in the genetic regulation of obesity.

11.
Nat Genet ; 55(9): 1435-1439, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37592023

RESUMEN

Linkage and candidate gene studies have identified several breast cancer susceptibility genes, but the overall contribution of coding variation to breast cancer is unclear. To evaluate the role of rare coding variants more comprehensively, we performed a meta-analysis across three large whole-exome sequencing datasets, containing 26,368 female cases and 217,673 female controls. Burden tests were performed for protein-truncating and rare missense variants in 15,616 and 18,601 genes, respectively. Associations between protein-truncating variants and breast cancer were identified for the following six genes at exome-wide significance (P < 2.5 × 10-6): the five known susceptibility genes ATM, BRCA1, BRCA2, CHEK2 and PALB2, together with MAP3K1. Associations were also observed for LZTR1, ATR and BARD1 with P < 1 × 10-4. Associations between predicted deleterious rare missense or protein-truncating variants and breast cancer were additionally identified for CDKN2A at exome-wide significance. The overall contribution of coding variants in genes beyond the previously known genes is estimated to be small.


Asunto(s)
Exoma , Neoplasias , Femenino , Humanos , Secuenciación del Exoma , Exoma/genética , Mutación Missense/genética
12.
Nat Commun ; 14(1): 3904, 2023 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-37400433

RESUMEN

Higher cardiorespiratory fitness is associated with lower risk of type 2 diabetes. However, the causality of this relationship and the biological mechanisms that underlie it are unclear. Here, we examine genetic determinants of cardiorespiratory fitness in 450k European-ancestry individuals in UK Biobank, by leveraging the genetic overlap between fitness measured by an exercise test and resting heart rate. We identified 160 fitness-associated loci which we validated in an independent cohort, the Fenland study. Gene-based analyses prioritised candidate genes, such as CACNA1C, SCN10A, MYH11 and MYH6, that are enriched in biological processes related to cardiac muscle development and muscle contractility. In a Mendelian Randomisation framework, we demonstrate that higher genetically predicted fitness is causally associated with lower risk of type 2 diabetes independent of adiposity. Integration with proteomic data identified N-terminal pro B-type natriuretic peptide, hepatocyte growth factor-like protein and sex hormone-binding globulin as potential mediators of this relationship. Collectively, our findings provide insights into the biological mechanisms underpinning cardiorespiratory fitness and highlight the importance of improving fitness for diabetes prevention.


Asunto(s)
Capacidad Cardiovascular , Diabetes Mellitus Tipo 2 , Humanos , Diabetes Mellitus Tipo 2/genética , Capacidad Cardiovascular/fisiología , Proteómica , Obesidad , Factores de Riesgo
13.
Lancet Diabetes Endocrinol ; 11(8): 545-554, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37385287

RESUMEN

BACKGROUND: Identification of genetic causes of central precocious puberty have revealed epigenetic mechanisms as regulators of human pubertal timing. MECP2, an X-linked gene, encodes a chromatin-associated protein with a role in gene transcription. MECP2 loss-of-function mutations usually cause Rett syndrome, a severe neurodevelopmental disorder. Early pubertal development has been shown in several patients with Rett syndrome. The aim of this study was to explore whether MECP2 variants are associated with an idiopathic central precocious puberty phenotype. METHODS: In this translational cohort study, participants were recruited from seven tertiary centres from five countries (Brazil, Spain, France, the USA, and the UK). Patients with idiopathic central precocious puberty were investigated for rare potentially damaging variants in the MECP2 gene, to assess whether MECP2 might contribute to the cause of central precocious puberty. Inclusion criteria were the development of progressive pubertal signs (Tanner stage 2) before the age of 8 years in girls and 9 years in boys and basal or GnRH-stimulated LH pubertal concentrations. Exclusion criteria were the diagnosis of peripheral precocious puberty and the presence of any recognised cause of central precocious puberty (CNS lesions, known monogenic causes, genetic syndromes, or early exposure to sex steroids). All patients included were followed up at the outpatient clinics of participating academic centres. We used high-throughput sequencing in 133 patients and Sanger sequencing of MECP2 in an additional 271 patients. Hypothalamic expression of Mecp2 and colocalisation with GnRH neurons were determined in mice to show expression of Mecp2 in key nuclei related to pubertal timing regulation. FINDINGS: Between Jun 15, 2020, and Jun 15, 2022, 404 patients with idiopathic central precocious puberty (383 [95%] girls and 21 [5%] boys; 261 [65%] sporadic cases and 143 [35%] familial cases from 134 unrelated families) were enrolled and assessed. We identified three rare heterozygous likely damaging coding variants in MECP2 in five girls: a de novo missense variant (Arg97Cys) in two monozygotic twin sisters with central precocious puberty and microcephaly; a de novo missense variant (Ser176Arg) in one girl with sporadic central precocious puberty, obesity, and autism; and an insertion (Ala6_Ala8dup) in two unrelated girls with sporadic central precocious puberty. Additionally, we identified one rare heterozygous 3'UTR MECP2 insertion (36_37insT) in two unrelated girls with sporadic central precocious puberty. None of them manifested Rett syndrome. Mecp2 protein colocalised with GnRH expression in hypothalamic nuclei responsible for GnRH regulation in mice. INTERPRETATION: We identified rare MECP2 variants in girls with central precocious puberty, with or without mild neurodevelopmental abnormalities. MECP2 might have a role in the hypothalamic control of human pubertal timing, adding to the evidence of involvement of epigenetic and genetic mechanisms in this crucial biological process. FUNDING: Fundação de Amparo à Pesquisa do Estado de São Paulo, Conselho Nacional de Desenvolvimento Científico e Tecnológico, and the Wellcome Trust.


Asunto(s)
Pubertad Precoz , Síndrome de Rett , Animales , Niño , Femenino , Humanos , Masculino , Ratones , Brasil , Estudios de Cohortes , Hormona Folículo Estimulante , Hormona Liberadora de Gonadotropina , Hormona Luteinizante/metabolismo , Pubertad Precoz/genética , Pubertad Precoz/diagnóstico , Síndrome de Rett/genética , Síndrome de Rett/complicaciones
14.
Nat Med ; 29(7): 1692-1699, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37349538

RESUMEN

Premature ovarian insufficiency (POI) affects 1% of women and is a leading cause of infertility. It is often considered to be a monogenic disorder, with pathogenic variants in ~100 genes described in the literature. We sought to systematically evaluate the penetrance of variants in these genes using exome sequence data in 104,733 women from the UK Biobank, 2,231 (1.14%) of whom reported at natural menopause under the age of 40 years. We found limited evidence to support any previously reported autosomal dominant effect. For nearly all heterozygous effects on previously reported POI genes, we ruled out even modest penetrance, with 99.9% (13,699 out of 13,708) of all protein-truncating variants found in reproductively healthy women. We found evidence of haploinsufficiency effects in several genes, including TWNK (1.54 years earlier menopause, P = 1.59 × 10-6) and SOHLH2 (3.48 years earlier menopause, P = 1.03 × 10-4). Collectively, our results suggest that, for the vast majority of women, POI is not caused by autosomal dominant variants either in genes previously reported or currently evaluated in clinical diagnostic panels. Our findings, plus previous studies, suggest that most POI cases are likely oligogenic or polygenic in nature, which has important implications for future clinical genetic studies, and genetic counseling for families affected by POI.


Asunto(s)
Menopausia Prematura , Insuficiencia Ovárica Primaria , Femenino , Humanos , Adulto , Penetrancia , Insuficiencia Ovárica Primaria/genética , Insuficiencia Ovárica Primaria/complicaciones , Insuficiencia Ovárica Primaria/patología , Menopausia Prematura/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética
15.
J Clin Endocrinol Metab ; 108(12): e1580-e1587, 2023 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-37339320

RESUMEN

CONTEXT: The melanocortin 3 receptor (MC3R) has recently emerged as a critical regulator of pubertal timing, linear growth, and the acquisition of lean mass in humans and mice. In population-based studies, heterozygous carriers of deleterious variants in MC3R report a later onset of puberty than noncarriers. However, the frequency of such variants in patients who present with clinical disorders of pubertal development is currently unknown. OBJECTIVE: This work aimed to determine whether deleterious MC3R variants are more frequently found in patients clinically presenting with constitutional delay of growth and puberty (CDGP) or normosmic idiopathic hypogonadotropic hypogonadism (nIHH). METHODS: We examined the sequence of MC3R in 362 adolescents with a clinical diagnosis of CDGP and 657 patients with nIHH, experimentally characterized the signaling properties of all nonsynonymous variants found and compared their frequency to that in 5774 controls from a population-based cohort. Additionally, we established the relative frequency of predicted deleterious variants in individuals with self-reported delayed vs normally timed menarche/voice-breaking in the UK Biobank cohort. RESULTS: MC3R loss-of-function variants were infrequent but overrepresented in patients with CDGP (8/362 [2.2%]; OR = 4.17; P = .001). There was no strong evidence of overrepresentation in patients with nIHH (4/657 [0.6%]; OR = 1.15; P = .779). In 246 328 women from the UK Biobank, predicted deleterious variants were more frequently found in those self-reporting delayed (aged ≥16 years) vs normal age at menarche (OR = 1.66; P = 3.90E-07). CONCLUSION: We have found evidence that functionally damaging variants in MC3R are overrepresented in individuals with CDGP but are not a common cause of this phenotype.


Asunto(s)
Hipogonadismo , Pubertad Tardía , Adolescente , Humanos , Femenino , Animales , Ratones , Receptor de Melanocortina Tipo 3 , Prevalencia , Hipogonadismo/epidemiología , Hipogonadismo/genética , Hipogonadismo/complicaciones , Pubertad Tardía/epidemiología , Pubertad Tardía/genética , Pubertad Tardía/diagnóstico , Pubertad/genética , Trastornos del Crecimiento/genética
16.
Eur J Endocrinol ; 188(4): 353-365, 2023 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-36943306

RESUMEN

OBJECTIVE: Growth hormone insensitivity (GHI) encompasses growth restriction, normal/elevated growth hormone (GH), and low insulin-like growth factor I (IGF1). "Nonclassical" GHI is poorly characterized and is rarely caused by heterozygous dominant-negative (DN) variants located in the intracellular or transmembrane domains of the GH receptor (GHR). We sought to determine the molecular mechanisms underpinning the growth restriction in 2 GHI cases. METHODS AND DESIGN: A custom-made genetic investigative pipeline was exploited to identify the genetic cause of growth restriction in patients with GHI. Nanoluc binary technology (NanoBiT), in vitro splicing assays, western blotting, and flow cytometry, characterized the novel GHR variants. RESULTS: Novel heterozygous GHR variants were identified in 2 unrelated patients with GHI. In vitro splicing assays indicated both variants activated the same alternative splice acceptor site resulting in aberrant splicing and exclusion of 26 base pairs of GHR exon 9. The GHR variants produced truncated receptors and impaired GH-induced GHR signaling. NanoBiT complementation and flow cytometry showed increased cell surface expression of variant GHR homo/heterodimers compared to wild-type (WT) homodimers and increased recombinant human GH binding to variant GHR homo/heterodimers and GH binding protein (GHBP) cleaved from the variant GHRs. The findings demonstrated increased variant GHR dimers and GHBP with resultant GH sequestration. CONCLUSION: We identified and characterized 2 novel, naturally occurring truncated GHR gene variants. Intriguingly, these DN GHR variants act via the same cryptic splice acceptor site, highlighting impairing GH binding to excess GHBP as a potential therapeutic approach.


Asunto(s)
Enanismo , Hormona de Crecimiento Humana , Humanos , Hormona del Crecimiento/genética , Receptores de Somatotropina/genética , Sitios de Empalme de ARN , Hormona de Crecimiento Humana/metabolismo , Enanismo/genética , Factor I del Crecimiento Similar a la Insulina/genética
17.
medRxiv ; 2023 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-36778285

RESUMEN

Mosaic loss of the X chromosome (mLOX) is the most commonly occurring clonal somatic alteration detected in the leukocytes of women, yet little is known about its genetic determinants or phenotypic consequences. To address this, we estimated mLOX in >900,000 women across eight biobanks, identifying 10% of women with detectable X loss in approximately 2% of their leukocytes. Out of 1,253 diseases examined, women with mLOX had an elevated risk of myeloid and lymphoid leukemias and pneumonia. Genetic analyses identified 49 common variants influencing mLOX, implicating genes with established roles in chromosomal missegregation, cancer predisposition, and autoimmune diseases. Complementary exome-sequence analyses identified rare missense variants in FBXO10 which confer a two-fold increased risk of mLOX. A small fraction of these associations were shared with mosaic Y chromosome loss in men, suggesting different biological processes drive the formation and clonal expansion of sex chromosome missegregation events. Allelic shift analyses identified alleles on the X chromosome which are preferentially retained, demonstrating that variation at many loci across the X chromosome is under cellular selection. A novel polygenic score including 44 independent X chromosome allelic shift loci correctly inferred the retained X chromosomes in 80.7% of mLOX cases in the top decile. Collectively our results support a model where germline variants predispose women to acquiring mLOX, with the allelic content of the X chromosome possibly shaping the magnitude of subsequent clonal expansion.

18.
Cell Genom ; 2(12): None, 2022 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-36530175

RESUMEN

Type 2 diabetes (T2D) is a heritable metabolic disorder. While population studies have identified hundreds of common genetic variants associated with T2D, the role of rare (frequency < 0.1%) protein-coding variation is less clear. We performed exome sequence analysis in 418,436 (n = 32,374 T2D cases) individuals in the UK Biobank. We identified previously reported genes (GCK, GIGYF1, HNF1A) in addition to missense variants in ZEB2 (n = 31 carriers; odds ratio [OR] = 5.5 [95% confidence interval = 2.5-12.0]; p = 6.4 × 10-7), MLXIPL (n = 245; OR = 2.3 [1.6-3.2]; p = 3.2 × 10-7), and IGF1R (n = 394; OR = 2.4 [1.8-3.2]; p = 1.3 × 10-10). Carriers of damaging missense variants within IGF1R were also shorter (-2.2 cm [-1.8 to -2.7]; p = 1.2 × 10-19) and had higher circulating insulin-like growth factor-1 (IGF-1) protein levels (2.3 nmol/L [1.7-2.9]; p = 2.8 × 10-14), indicating relative IGF-1 resistance. A likely causal role of IGF-1 resistance was supported by Mendelian randomization analyses using common variants. These results increase understanding of the genetic architecture of T2D and highlight the growth hormone/IGF-1 axis as a potential therapeutic target.

19.
PLoS Genet ; 18(6): e1010162, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35653391

RESUMEN

Diet is considered as one of the most important modifiable factors influencing human health, but efforts to identify foods or dietary patterns associated with health outcomes often suffer from biases, confounding, and reverse causation. Applying Mendelian randomization in this context may provide evidence to strengthen causality in nutrition research. To this end, we first identified 283 genetic markers associated with dietary intake in 445,779 UK Biobank participants. We then converted these associations into direct genetic effects on food exposures by adjusting them for effects mediated via other traits. The SNPs which did not show evidence of mediation were then used for MR, assessing the association between genetically predicted food choices and other risk factors, health outcomes. We show that using all associated SNPs without omitting those which show evidence of mediation, leads to biases in downstream analyses (genetic correlations, causal inference), similar to those present in observational studies. However, MR analyses using SNPs which have only a direct effect on the exposure on food exposures provided unequivocal evidence of causal associations between specific eating patterns and obesity, blood lipid status, and several other risk factors and health outcomes.


Asunto(s)
Ingestión de Alimentos , Variación Genética , Causalidad , Humanos , Evaluación de Resultado en la Atención de Salud , Factores de Riesgo
20.
Genet Med ; 24(9): 1909-1919, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35687092

RESUMEN

PURPOSE: The study aimed to systematically ascertain male sex chromosome abnormalities, 47,XXY (Klinefelter syndrome [KS]) and 47,XYY, and characterize their risks of adverse health outcomes. METHODS: We analyzed genotyping array or exome sequence data in 207,067 men of European ancestry aged 40 to 70 years from the UK Biobank and related these to extensive routine health record data. RESULTS: Only 49 of 213 (23%) of men whom we identified with KS and only 1 of 143 (0.7%) with 47,XYY had a diagnosis of abnormal karyotype on their medical records or self-report. We observed expected associations for KS with reproductive dysfunction (late puberty: risk ratio [RR] = 2.7; childlessness: RR = 4.2; testosterone concentration: RR = -3.8 nmol/L, all P < 2 × 10-8), whereas XYY men appeared to have normal reproductive function. Despite this difference, we identified several higher disease risks shared across both KS and 47,XYY, including type 2 diabetes (RR = 3.0 and 2.6, respectively), venous thrombosis (RR = 6.4 and 7.4, respectively), pulmonary embolism (RR = 3.3 and 3.7, respectively), and chronic obstructive pulmonary disease (RR = 4.4 and 4.6, respectively) (all P < 7 × 10-6). CONCLUSION: KS and 47,XYY were mostly unrecognized but conferred substantially higher risks for metabolic, vascular, and respiratory diseases, which were only partially explained by higher levels of body mass index, deprivation, and smoking.


Asunto(s)
Diabetes Mellitus Tipo 2 , Síndrome de Klinefelter , Bancos de Muestras Biológicas , Humanos , Síndrome de Klinefelter/diagnóstico , Síndrome de Klinefelter/epidemiología , Síndrome de Klinefelter/genética , Masculino , Aberraciones Cromosómicas Sexuales , Reino Unido/epidemiología , Cariotipo XYY
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...