Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Can J Nurs Res ; 52(2): 117-128, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32046505

RESUMEN

BACKGROUND: Young children living in families experiencing social vulnerability, including low income, mental illness, addictions, social isolation, and/or homelessness, are at risk of developmental delay. Two-generation programs can improve outcomes for preschool children, but underlying mechanisms and outcomes for younger children remain unclear. PURPOSE: We explored program facilitation and identified developmental benefits of a two-generation program beginning prenatally. METHODS: In our convergent, concurrent mixed methods study, we interviewed agency staff (n = 10) and held focus groups with parents (n = 14). We compared child (N = 100) development between program intake and exit as measured by the Ages and Stages Questionnaires 3rd edition. RESULTS: Our core category, Engaging From Both Sides, included (a) Mitigating Adversity (focused codes Developing Trust, Letting Go of Fear, and Putting in the Effort); (b) Continual Learning (focused codes Staying Connected, and Taking it to the Community); (c) Fostering Families (focused codes Cultivating Optimism, and Happiness and Love); (d) Unravelling Cycles of Crisis (focused codes Advocating, and Helping Parents' Parent); and (e) Becoming Mainstream (focused codes Knowing Someone Has Your Back, and Managing Stress, Anxiety, and Anger). We found significant improvements in child Fine Motor, Problem-Solving, and Personal-Social domains between program intake and exit. CONCLUSIONS: Our study adds to existing literature regarding mechanisms of two-generation programs beginning prenatally. Mitigating effects of intergenerational adversity was the primary motivation for interaction and engagement of staff and parents in two-generation programming, which improved child development.


Asunto(s)
Trastornos Mentales , Adulto , Canadá , Preescolar , Miedo , Femenino , Humanos , Lactante , Masculino , Responsabilidad Parental , Embarazo , Apoyo Social , Confianza
2.
Early Child Dev Care ; 186(8): 1316-1326, 2016 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-27453625

RESUMEN

We explored longitudinal effects of a two-generation preschool programme on receptive language scores in children (n = 78) at age 10 years, living with low income. Scores at four time-points, programme intake, exit, age 7, and age 10 years were measured using the Peabody picture vocabulary test (3rd ed.). Effects of culture (Aboriginal, other Canadian-born, and recent immigrant), and gender of the children were explored. Between programme intake and age 10, scores improved significantly, F(3, 75) = 21.11, p < .0005. There were significant differences among cultural groups at all time-points except age 10. Scores differed significantly for girls, but not boys, at age 10, F = 5.11, p = .01. Recent immigrant boys reached the Canadian average, while girls were two-thirds of the standard deviation below average. Early intervention programmes must include a focus on the unique circumstances of recent immigrant girls; supportive transition workers in schools are one recommendation.

3.
Am J Physiol Cell Physiol ; 300(6): C1291-7, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21389275

RESUMEN

The aim of this study was to investigate the role of AMP-kinase (AMPK) in the regulation of iodide uptake by the thyroid gland. Iodide uptake was assessed in PCCL3 follicular thyroid cells exposed to the AMPK agonist 5-aminoimidazole-4-carboxamide-ribonucleoside (AICAR), and also in rat thyroid glands 24 h after a single intraperitoneal injection of AICAR. In PCCL3 cells, AICAR-induced AMPK and acetyl-CoA carboxylase (ACC) phosphorylation decreased iodide uptake in a concentration-dependent manner, while the AMPK inhibitor compound C prevented this effect. In the thyroid gland of rats injected with AICAR, AMPK and ACC phosphorylation was increased and iodide uptake was reduced by ~35%. Under conditions of increased AMPK phosphorylation/activation such as TSH deprivation or AICAR treatment, significant reductions in cellular Na(+)/I(-)-symporter (NIS) protein (~41%) and mRNA content (~65%) were observed. The transcriptional (actinomycin D) and translational (cycloheximide) inhibitors, as well as the AMPK inhibitor compound C prevented AICAR-induced reduction of NIS protein content in PCCL3 cells. The presence of TSH in the culture medium reduced AMPK phosphorylation in PCCL3 cells, while inhibition of protein kinase A (PKA) with H89 prevented this effect. Conversely, the adenylyl cyclase activator forskolin abolished the AMPK phosphorylation response induced by TSH withdrawal in PCCL3 cells. These findings demonstrate that TSH suppresses AMPK phosphorylation/activation in a cAMP-PKA-dependent manner. In summary, we provide novel evidence that AMPK is involved in the physiological regulation of iodide uptake, which is an essential step for the formation of thyroid hormones as well as for the regulation of thyroid function.


Asunto(s)
Adenilato Quinasa/metabolismo , Yoduros/metabolismo , Simportadores/metabolismo , Glándula Tiroides/metabolismo , Adenilato Quinasa/antagonistas & inhibidores , Aminoimidazol Carboxamida/análogos & derivados , Aminoimidazol Carboxamida/farmacología , Animales , Transporte Biológico/fisiología , Línea Celular , Colforsina/metabolismo , Inhibidores Enzimáticos/metabolismo , Hipoglucemiantes/farmacología , Isoquinolinas/metabolismo , Masculino , Ratas , Ratas Wistar , Ribonucleótidos/farmacología , Sulfonamidas/metabolismo , Glándula Tiroides/citología , Glándula Tiroides/efectos de los fármacos , Tirotropina/metabolismo
4.
Mol Endocrinol ; 24(7): 1434-40, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20501641

RESUMEN

The aim of this study was to investigate the molecular mechanisms by which AMP-kinase (AMPK) activation inhibits basal and insulin-stimulated glucose uptake in primary adipocytes. Rat epididymal adipocytes were exposed to 5-aminoimidazole-4-carboxamide-1-beta-d-ribofuranoside (AICAR) for 1 h. Subsequently, basal and insulin-stimulated glucose uptake and the phosphorylation of AMPK, acetyl-CoA carboxylase, Akt, and the Akt substrate of 160 kDa (AS160/TBC1D4) were determined. In order to investigate whether these effects of AICAR were mediated by AMPK activation, these parameters were also assessed in adipocytes either expressing LacZ (control) or a kinase-dead AMPKalpha1 mutant. AICAR increased AMPK activation without affecting basal and insulin-stimulated Akt1/2 phosphorylation on Thr(308) and Ser(473) residues. However, AMPK activation suppressed the phosphorylation of AS160/TBC1D4 and its interaction with the 14-3-3 signal transduction-regulatory protein, which was accompanied by significant reductions in plasma membrane glucose transporter 4 content and glucose uptake under basal and insulin-stimulated conditions. Phosphorylation of Akt substrates glycogen synthase kinase 3alpha and -beta were unaltered by AICAR, indicating that the AMPK-regulatory effects were specific to the AS160/TBC1D4 signaling pathway. Expression of the kinase-dead AMPKalpha1 mutant fully prevented the suppression of AS160/TBC1D4 phosphorylation, plasma membrane glucose transporter 4 content, and the inhibitory effect of AICAR-induced AMPK activation on basal and insulin-stimulated glucose uptake. This study is the first to provide evidence that disruption of AMPKalpha1 signaling prevents the suppressive effects of AMPK activation on AS160/TBC1D4 phosphorylation and glucose uptake, indicating that insulin-signaling steps that are common to white adipose tissue and skeletal muscle regulation of glucose uptake are distinctly affected by AMPK activation.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Adipocitos/efectos de los fármacos , Adipocitos/metabolismo , Aminoimidazol Carboxamida/análogos & derivados , Proteínas Activadoras de GTPasa/metabolismo , Glucosa/metabolismo , Ribonucleótidos/farmacología , Proteínas Quinasas Activadas por AMP/genética , Aminoimidazol Carboxamida/farmacología , Animales , Transporte Biológico/efectos de los fármacos , Transporte Biológico/genética , Proteínas Activadoras de GTPasa/genética , Transportador de Glucosa de Tipo 4/genética , Transportador de Glucosa de Tipo 4/metabolismo , Immunoblotting , Inmunoprecipitación , Masculino , Fosforilación/efectos de los fármacos , Transporte de Proteínas/efectos de los fármacos , Transporte de Proteínas/genética , Ratas , Ratas Wistar , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal/efectos de los fármacos
5.
J Biol Chem ; 284(28): 19027-42, 2009 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-19389706

RESUMEN

Vascular smooth muscle cells (VSMCs) maintain the ability to modulate their phenotype in response to changing environmental stimuli. This phenotype modulation plays a critical role in the development of most vascular disease states. In these studies, stimulation of cultured vascular smooth muscle cells with platelet-derived growth factor resulted in marked induction of c-jun expression, which was attenuated by protein kinase Cdelta and calcium/calmodulin-dependent protein kinase inhibition. Given that these signaling pathways have been shown to relieve the repressive effects of class II histone deacetylases (HDACs) on myocyte enhancer factor (MEF) 2 proteins, we ectopically expressed HDAC4 and observed repression of c-jun expression. Congruently, suppression of HDAC4 by RNA interference resulted in enhanced c-jun expression. Consistent with these findings, mutation of the MEF2 cis-element in the c-jun promoter resulted in promoter activation during quiescent conditions, suggesting that the MEF2 cis-element functions as a repressor in this context. Furthermore, we demonstrate that protein kinase A attenuates c-Jun expression by promoting the formation of a MEF2.HDAC4 repressor complex by inhibiting salt-inducible kinase 1. Finally, we document a physical interaction between c-Jun and myocardin, and we document that forced expression of c-Jun represses the ability of myocardin to activate smooth muscle gene expression. Thus, MEF2 and HDAC4 act to repress c-Jun expression in quiescent VSMCs, protein kinase A enhances this repression, and platelet-derived growth factor derepresses c-Jun expression through calcium/calmodulin-dependent protein kinases and novel protein kinase Cs. Regulation of this molecular "switch" on the c-jun promoter may thus prove critical for toggling between the activated and quiescent VSMC phenotypes.


Asunto(s)
Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Regulación de la Expresión Génica , Histona Desacetilasas/metabolismo , Factores Reguladores Miogénicos/metabolismo , Proteínas Proto-Oncogénicas c-jun/metabolismo , Animales , Núcleo Celular/metabolismo , Factores de Transcripción MEF2 , Ratones , Modelos Biológicos , Músculo Liso Vascular/metabolismo , Proteínas Nucleares/metabolismo , Regiones Promotoras Genéticas , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Ratas , Transactivadores/metabolismo
6.
J Lipid Res ; 50(4): 704-15, 2009 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19050316

RESUMEN

This study was designed to investigate the effects of prolonged activation of AMP-activated protein kinase (AMPK) on lipid partitioning and the potential molecular mechanisms involved in these processes in white adipose tissue (WAT). Rat epididymal adipocytes were incubated with 5'-aminoimidasole-4-carboxamide-1-beta-d-ribofuranoside (AICAR;0.5 mM) for 15 h. Also, epididymal adipocytes were isolated 15 h after AICAR was injected (i.p. 0.7 g/kg body weight) in rats. Adipocytes were utilized for various metabolic assays and for determination of gene expression and protein content. Time-dependent in vivo plasma NEFA concentrations were determined. AICAR treatment significantly increased AMPK activation, inhibited lipogenesis, and increased FA oxidation. This was accompanied by upregulation of peroxisome proliferator-activated receptor (PPAR)alpha, PPARdelta, and PPARgamma-coactivator-1alpha (PGC-1alpha) mRNA levels. Lipolysis was first suppressed, but then increased, both in vitro and in vivo, with prolonged AICAR treatment. Exposure to AICAR increased adipose triglyceride lipase (ATGL) content and FA release, despite inhibition of basal and epinephrine-stimulated hormone-sensitive lipase (HSL) activity. Here, we provide evidence that prolonged AICAR-induced AMPK activation can remodel adipocyte metabolism by upregulating pathways that favor energy dissipation versus lipid storage in WAT. Additionally, we show novel time-dependent effects of AICAR-induced AMPK activation on lipolysis, which involves antagonistic modulation of HSL and ATGL.


Asunto(s)
Adenilato Quinasa/metabolismo , Adipocitos Blancos/efectos de los fármacos , Adipocitos Blancos/metabolismo , Aminoimidazol Carboxamida/análogos & derivados , Ribonucleótidos/farmacología , Adenilato Quinasa/genética , Aminoimidazol Carboxamida/farmacología , Animales , Secuencia de Bases , Cartilla de ADN/genética , Metabolismo Energético/efectos de los fármacos , Activación Enzimática/efectos de los fármacos , Técnicas In Vitro , Lipasa/metabolismo , Lipólisis/efectos de los fármacos , Masculino , Modelos Biológicos , Obesidad/tratamiento farmacológico , Obesidad/metabolismo , Fosforilación , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas , Ratas Wistar , Esterol Esterasa/metabolismo
7.
Mol Cell Biol ; 28(9): 2952-70, 2008 May.
Artículo en Inglés | MEDLINE | ID: mdl-18299387

RESUMEN

Activation of protein kinase A (PKA) by elevation of the intracellular cyclic AMP (cAMP) level inhibits skeletal myogenesis. Previously, an indirect modulation of the myogenic regulatory factors (MRFs) was implicated as the mechanism. Because myocyte enhancer factor 2 (MEF2) proteins are key regulators of myogenesis and obligatory partners for the MRFs, here we assessed whether these proteins could be involved in PKA-mediated myogenic repression. Initially, in silico analysis revealed several consensus PKA phosphoacceptor sites on MEF2, and subsequent analysis by in vitro kinase assays indicated that PKA directly and efficiently phosphorylates MEF2D. Using mass spectrometric determination of phosphorylated residues, we document that MEF2D serine 121 and serine 190 are targeted by PKA. Transcriptional reporter gene assays to assess MEF2D function revealed that PKA potently represses the transactivation properties of MEF2D. Furthermore, engineered mutation of MEF2D PKA phosphoacceptor sites (serines 121 and 190 to alanine) rendered a PKA-resistant MEF2D protein, which efficiently rescues myogenesis from PKA-mediated repression. Concomitantly, increased intracellular cAMP-mediated PKA activation also resulted in an enhanced nuclear accumulation of histone deacetylase 4 (HDAC4) and a subsequent increase in the MEF2D-HDAC4 repressor complex. Collectively, these data identify MEF2D as a primary target of PKA signaling in myoblasts that leads to inhibition of the skeletal muscle differentiation program.


Asunto(s)
Proteínas Quinasas Dependientes de AMP Cíclico/fisiología , Células Musculares/citología , Desarrollo de Músculos/fisiología , Músculo Esquelético/fisiología , Factores Reguladores Miogénicos/fisiología , Secuencia de Aminoácidos , Animales , Diferenciación Celular , Células Cultivadas , AMP Cíclico/metabolismo , Histona Desacetilasas/fisiología , Factores de Transcripción MEF2 , Ratones , Datos de Secuencia Molecular , Células Musculares/fisiología , Músculo Esquelético/citología , Mutagénesis Sitio-Dirigida , Fosforilación , Unión Proteica , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
8.
Mol Cell Biol ; 26(16): 6248-60, 2006 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-16880533

RESUMEN

Transforming growth factor beta1 (TGF-beta1) and myostatin signaling, mediated by the same Smad downstream effectors, potently repress skeletal muscle cell differentiation. Smad7 inhibits these cytokine signaling pathways. The role of Smad7 during skeletal muscle cell differentiation was assessed. In these studies, we document that increased expression of Smad7 abrogates myostatin- but not TGF-beta1-mediated repression of myogenesis. Further, constitutive expression of exogenous Smad7 potently enhanced skeletal muscle differentiation and cellular hypertrophy. Conversely, targeting of endogenous Smad7 by small interfering RNA inhibited C2C12 muscle cell differentiation, indicating an essential role for Smad7 during myogenesis. Congruent with a role for Smad7 in myogenesis, we observed that the muscle regulatory factor (MyoD) binds to and transactivates the Smad7 proximal promoter region. Finally, we document that Smad7 directly interacts with MyoD and enhances MyoD transcriptional activity. Thus, Smad7 cooperates with MyoD, creating a positive loop to induce Smad7 expression and to promote MyoD driven myogenesis. Taken together, these data implicate Smad7 as a fundamental regulator of differentiation in skeletal muscle cells.


Asunto(s)
Diferenciación Celular , Músculo Esquelético/citología , Proteína smad7/metabolismo , Receptores de Activinas Tipo II/metabolismo , Animales , Células Cultivadas , Fibroblastos/citología , Genes Dominantes , Ratones , Modelos Biológicos , Desarrollo de Músculos , Fibras Musculares Esqueléticas/citología , Fibras Musculares Esqueléticas/metabolismo , Mutación/genética , Proteína MioD/metabolismo , Mioblastos/citología , Miostatina , Regiones Promotoras Genéticas/genética , Unión Proteica , ARN Interferente Pequeño/genética , Factor de Crecimiento Transformador beta/metabolismo
9.
Mol Cell Biol ; 26(15): 5771-83, 2006 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-16847330

RESUMEN

The MyoD family of basic helix-loop-helix transcription factors function as heterodimers with members of the E-protein family to induce myogenic gene activation. The E-protein HEB is alternatively spliced to generate alpha and beta isoforms. While the function of these molecules has been studied in other cell types, questions persist regarding the molecular functions of HEB proteins in skeletal muscle. Our data demonstrate that HEB alpha expression remains unchanged in both myoblasts and myotubes, whereas HEB beta is upregulated during the early phases of terminal differentiation. Upon induction of differentiation, a MyoD-HEB beta complex bound the E1 E-box of the myogenin promoter leading to transcriptional activation. Importantly, forced expression of HEB beta with MyoD synergistically lead to precocious myogenin expression in proliferating myoblasts. However, after differentiation, HEB alpha and HEB beta synergized with myogenin, but not MyoD, to activate the myogenin promoter. Specific knockdown of HEB beta by small interfering RNA in myoblasts blocked differentiation and inhibited induction of myogenin transcription. Therefore, HEB alpha and HEB beta play novel and central roles in orchestrating the regulation of myogenic factor activity through myogenic differentiation.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Diferenciación Celular/fisiología , Proteína MioD/metabolismo , Mioblastos/fisiología , Isoformas de Proteínas/metabolismo , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Línea Celular , Proliferación Celular , MAP Quinasa Quinasa 1/genética , MAP Quinasa Quinasa 1/metabolismo , Ratones , Músculo Esquelético/citología , Músculo Esquelético/crecimiento & desarrollo , Músculo Esquelético/fisiología , Proteína MioD/genética , Mioblastos/citología , Miogenina/genética , Miogenina/metabolismo , Regiones Promotoras Genéticas , Unión Proteica , Isoformas de Proteínas/genética , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Transcripción Genética
10.
J Cell Biol ; 171(3): 471-82, 2005 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-16275751

RESUMEN

MyoD and Myf5 are basic helix-loop-helix transcription factors that play key but redundant roles in specifying myogenic progenitors during embryogenesis. However, there are functional differences between the two transcription factors that impact myoblast proliferation and differentiation. Target gene activation could be one such difference. We have used microarray and polymerase chain reaction approaches to measure the induction of muscle gene expression by MyoD and Myf5 in an in vitro model. In proliferating cells, MyoD and Myf5 function very similarly to activate the expression of likely growth phase target genes such as L-myc, m-cadherin, Mcpt8, Runx1, Spp1, Six1, IGFBP5, and Chrnbeta1. MyoD, however, is strikingly more effective than Myf5 at inducing differentiation-phase target genes. This distinction between MyoD and Myf5 results from a novel and unanticipated cooperation between the MyoD NH2- and COOH-terminal regions. Together, these results support the notion that Myf5 functions toward myoblast proliferation, whereas MyoD prepares myoblasts for efficient differentiation.


Asunto(s)
Diferenciación Celular , Proteína MioD/fisiología , Mioblastos/metabolismo , Factor 5 Regulador Miogénico/metabolismo , Animales , Proliferación Celular , Células Cultivadas , Regulación de la Expresión Génica , Ratones , Ratones Noqueados , Músculo Esquelético/citología , Músculo Esquelético/metabolismo , Proteína MioD/genética , Mioblastos/citología , Factor 5 Regulador Miogénico/genética , Análisis de Secuencia por Matrices de Oligonucleótidos , Estructura Terciaria de Proteína , Activación Transcripcional
11.
Mol Cell Biol ; 22(13): 4714-22, 2002 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-12052879

RESUMEN

Signaling mediated by ErbB2 is thought to play a critical role in numerous developmental processes. However, due to the embryonic lethality associated with the germ line inactivation of erbB2, its role in adult tissues remains largely obscure. Given the expression of ErbB2 at the neuromuscular junction, we have created a muscle-specific knockout to assess its role there. This resulted in viable mice with a progressive defect in proprioception due to loss of muscle spindles. Interestingly, a partial reduction of ErbB2 levels also reduced the number of muscle spindles. Although histological analysis of the muscle revealed an otherwise normal architecture, induction of muscle injury revealed a defect in muscle regeneration. Consistent with these observations, primary myoblasts lacking ErbB2 exhibit extensive apoptosis upon differentiation into myofibers. Taken together, these results illustrate a dual role for ErbB2 in both muscle spindle maintenance and survival of myoblasts.


Asunto(s)
Husos Musculares/fisiología , Músculo Esquelético/fisiología , Receptor ErbB-2/genética , Animales , Apoptosis/genética , Diferenciación Celular/genética , Supervivencia Celular/genética , Creatina Quinasa/genética , Forma MM de la Creatina-Quinasa , Integrasas/genética , Isoenzimas/genética , Ratones , Ratones Noqueados , Ratones Transgénicos , Husos Musculares/citología , Músculo Esquelético/citología , Propiocepción/genética , Receptor ErbB-2/metabolismo , Proteínas Virales/genética
12.
Mol Cell ; 9(3): 587-600, 2002 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-11931766

RESUMEN

We used expression arrays and chromatin immunoprecipitation assays to demonstrate that myogenesis consists of discrete subprograms of gene expression regulated by MyoD. Approximately 5% of assayed genes alter expression in a specific temporal sequence, and more than 1% are regulated by MyoD without the synthesis of additional transcription factors. MyoD regulates genes expressed at different times during myogenesis, and promoter-specific regulation of MyoD binding is a major mechanism of patterning gene expression. In addition, p38 kinase activity is necessary for the expression of a restricted subset of genes regulated by MyoD, but not for MyoD binding. The identification of distinct molecular mechanisms that regulate discrete subprograms of myogenesis should facilitate analyses of differentiation in normal development and disease.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica/fisiología , Desarrollo de Músculos/fisiología , Proteína MioD/metabolismo , Regiones Promotoras Genéticas , Transducción de Señal/fisiología , Animales , Línea Celular , Regulación de la Expresión Génica , Histonas/metabolismo , Ratones , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Proteína MioD/genética , Análisis de Secuencia por Matrices de Oligonucleótidos , Unión Proteica , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA