Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Chem ; 10: 976635, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36092655

RESUMEN

Flerovium (Fl, element 114) is the heaviest element chemically studied so far. To date, its interaction with gold was investigated in two gas-solid chromatography experiments, which reported two different types of interaction, however, each based on the level of a few registered atoms only. Whereas noble-gas-like properties were suggested from the first experiment, the second one pointed at a volatile-metal-like character. Here, we present further experimental data on adsorption studies of Fl on silicon oxide and gold surfaces, accounting for the inhomogeneous nature of the surface, as it was used in the experiment and analyzed as part of the reported studies. We confirm that Fl is highly volatile and the least reactive member of group 14. Our experimental observations suggest that Fl exhibits lower reactivity towards Au than the volatile metal Hg, but higher reactivity than the noble gas Rn.

2.
J Chem Phys ; 149(20): 204306, 2018 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-30501238

RESUMEN

Calculations of molecular properties of M(CO)5 and MH(CO)5, where M = Tc, Re, and Bh, and of the products of their decomposition, M(CO)4 and MH(CO)4, were performed using density functional theory and coupled-cluster methods implemented in the relativistic program suits such as ADF, DIRAC, and ReSpect. The calculated first M-CO bond dissociation energies (FBDEs) of Bh(CO)5 and BhH(CO)5 turned out to be significantly weaker than those of the corresponding Re homologs. The reason for that is the relativistic destabilization and expansion of the 6d AOs, responsible for weaker σ-forth and π-back donations in the Bh compounds. The relativistic FBDEs of M(CO)5 have, therefore, a Λ-shape behavior in the row Tc-Re-Bh, while the non-relativistic values increase toward Bh. Using the results of the molecular calculations and a molecule-slab interaction model, adsorption enthalpies, ΔH ads, of group-7 carbonyl hydrides on quartz and Teflon were estimated for future gas-phase chromatography experiments. It was found that BhH(CO)5 should be almost as volatile as the homologs, although its interaction with the surfaces should be somewhat stronger than that of MH(CO)5 (M = Tc and Re), while the M(CO)4 (M = Tc, Re, and Bh) molecules should be non-volatile. It will, therefore, be difficult to distinguish between the group-7 MH(CO)5 species by measuring their ΔH ads on surfaces of Teflon and quartz with an error bar of ±4 kJ/mol. The trends in properties and ΔH ads of group-7 carbonyl hydrides are similar to those of group-8 carbonyls of Ru, Os, and Hs.

3.
Phys Chem Chem Phys ; 18(26): 17750-6, 2016 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-27315587

RESUMEN

Relativistic periodic calculations of adsorption energies of group-12 elements Hg and Cn and group-14 elements Pb and Fl on a hydroxylated (001) α-quartz surface at different adsorbate coverage have been performed using the ADF-BAND program. Results for the (4 × 4) supercell, being in good agreement with gas-phase chromatography experimental data for adsorption of Hg and Pb on quartz at zero coverage, indicate that Cn and Fl should not interact with the silicon oxide at room temperature. However, their moderately strong interaction with gold is expected. The reason for the non-interaction of Cn and Fl with SiO2 is strong relativistic effects on their valence electron shells.

4.
J Chem Phys ; 141(8): 084301, 2014 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-25173008

RESUMEN

The structure and energetics of eight diatomic heavy-atom molecules are presented. These include the species MAu, M2, and MHg, with M standing for the Hg, Cn (element 112), and Fl (element 114) atoms. The infinite-order relativistic 2-component Hamiltonian, known to closely reproduce 4-component results at lower computational cost, is used as framework. High-accuracy treatment of correlation is achieved by using the coupled cluster scheme with single, double, and perturbative triple excitations in large converged basis sets. The calculated interatomic separation and bond energy of Hg2, the only compound with known experimental data, are in good agreement with measurements. The binding of Fl to Au is stronger than that of Cn, predicting stronger adsorption on gold surfaces. The bond in the M2 species is strongest for Fl2, being of chemical nature; weaker bonds appear in Cn2 and Hg2, which are bound by van der Waals interactions, with the former bound more strongly due to the smaller van der Waals radius. The same set of calculations was also performed using the relativistic density functional theory approach, in order to test the performance of the latter for these weakly bound systems with respect to the more accurate coupled cluster calculations. It was found that for the MAu species the B3LYP functional provides better agreement with the coupled cluster results than the B88/P86 functional. However, for the M2 and the MHg molecules, B3LYP tends to underestimate the binding energies.

5.
J Chem Phys ; 141(6): 064314, 2014 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-25134578

RESUMEN

Relativistic, infinite order exact two-component, density functional theory electronic structure calculations were performed for MCl4 and MOCl2 of group-4 elements Ti, Zr, Hf, and element 104, Rf, with the aim to predict their behaviour in gas-phase chromatography experiments. RfCl4 and RfOCl2 were shown to be less stable than their lighter homologs in the group, tetrachlorides and oxychlorides of Zr and Hf, respectively. The oxychlorides turned out to be stable as a bent structure, though the stabilization energy with respect to the flat one (C(2v)) is very small. The trend in the formation of the tetrachlorides from the oxychlorides in group 4 is shown to be Zr < Hf < Rf, while the one in the formation of the oxychlorides from the chlorides is opposite. All the calculated properties are used to estimate adsorption energy of these species on various surfaces in order to interpret results of gas-phase chromatography experiments, as is shown in Paper II.

6.
J Chem Phys ; 141(6): 064315, 2014 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-25134579

RESUMEN

With the aim to interpret results of gas-phase chromatography experiments on volatility of group-4 tetrachlorides and oxychlorides including those of Rf, adsorption enthalpies of these species on neutral, and modified quartz surfaces were estimated on the basis of relativistic, two-component Density Functional Theory calculations of MCl4, MOCl2, MCl6(-), and MOCl4(2) with the use of adsorption models. Several mechanisms of adsorption were considered. In the case of physisorption of MCl4, the trend in the adsorption energy in the group should be Zr > Hf > Rf, so that the volatility should change in the opposite direction. The latter trend complies with the one in the sublimation enthalpies, ΔH(sub), of the Zr and Hf tetrachlorides, i.e., Zr < Hf. On the basis of a correlation between these quantities, ΔH(sub)(RfCl4) was predicted as 104.2 kJ/mol. The energy of physisorption of MOCl2 on quartz should increase in the group, Zr < Hf < Rf, as defined by increasing dipole moments of these molecules along the series. In the case of adsorption of MCl4 on quartz by chemical forces, formation of the MOCl2 or MOCl4(2-) complexes on the surface can take place, so that the sequence in the adsorption energy should be Zr > Hf > Rf, as defined by the complex formation energies. In the case of adsorption of MCl4 on a chlorinated quartz surface, formation of the MCl6(2-) surface complexes can occur, so that the trend in the adsorption strength should be Zr ≤ Hf < Rf. All the predicted sequences, showing a smooth change of the adsorption energy in the group, are in disagreement with the reversed trend Zr ≈ Rf < Hf, observed in the "one-atom-at-a-time" gas-phase chromatography experiments. Thus, currently no theoretical explanation can be found for the experimental observations.

7.
Nat Commun ; 4: 1835, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23673620

RESUMEN

The radioactive element astatine exists only in trace amounts in nature. Its properties can therefore only be explored by study of the minute quantities of artificially produced isotopes or by performing theoretical calculations. One of the most important properties influencing the chemical behaviour is the energy required to remove one electron from the valence shell, referred to as the ionization potential. Here we use laser spectroscopy to probe the optical spectrum of astatine near the ionization threshold. The observed series of Rydberg states enabled the first determination of the ionization potential of the astatine atom, 9.31751(8) eV. New ab initio calculations are performed to support the experimental result. The measured value serves as a benchmark for quantum chemistry calculations of the properties of astatine as well as for the theoretical prediction of the ionization potential of superheavy element 117, the heaviest homologue of astatine.

8.
J Chem Phys ; 138(17): 174301, 2013 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-23656128

RESUMEN

Fully relativistic, four-component density functional theory electronic structure calculations were performed for M(CO)6 of group-6 elements Cr, Mo, W, and element 106, Sg, with an aim to predict their adsorption behaviour in the gas-phase chromatography experiments. It was shown that seaborgium hexacarbonyl has a longer M-CO bond, smaller ionization potential, and larger polarizability than the other group-6 molecules. This is explained by the increasing relativistic expansion and destabilization of the (n - 1)d AOs with increasing Z in the group. Using results of the calculations, adsorption enthalpies of the group-6 hexacarbonyls on a quartz surface were predicted via a model of physisorption. According to the results, -ΔHads should decrease from Mo to W, while it should be almost equal--within the experimental error bars--for W and Sg. Thus, we expect that in the future gas-phase chromatography experiments it will be almost impossible--what concerns ΔHads--to distinguish between the W and Sg hexacarbonyls by their deposition on quartz.

9.
J Chem Phys ; 138(12): 124302, 2013 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-23556718

RESUMEN

Static dipole polarizabilities of element 119 and its singly charged cation are calculated, along with those of its lighter homologs, Cs and Fr. Relativity is treated within the 4-component Dirac-Coulomb formalism and electron correlation is included by the single reference coupled cluster approach with single, double, and perturbative triple excitations (CCSD(T)). Very good agreement with available experimental values is obtained for Cs, lending credence to the predictions for Fr and element 119. The atomic properties in group-1 are largely determined by the valence ns orbital, which experiences relativistic stabilization and contraction in the heavier elements. As a result, element 119 is predicted to have a relatively low polarizability (169.7 a.u.), comparable to that of Na. The adsorption enthalpy of element 119 on Teflon, which is important for possible future experimental studies of this element, is estimated as 17.6 kJ/mol, the lowest among the atoms considered here.


Asunto(s)
Cesio/química , Francio/química , Teoría Cuántica , Politetrafluoroetileno/química , Termodinámica
10.
J Chem Phys ; 136(13): 134317, 2012 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-22482562

RESUMEN

Trends in properties of group-2 elements Ca through element 120 and their M(2) and MAu dimers were determined on the basis of atomic and molecular relativistic density functional theory calculations. The relativistic contraction and stabilization of the ns AO with increasing atomic number were shown to result in the inversion of trends both in atomic and molecular properties in group 2 beyond Ba, so that element 120 should be chemically similar to Sr. Due to the same reason, bonding in (120)(2) and 120Au should be the weakest among the considered here M(2) and MAu. Using calculated dissociation energies of M(2), the sublimation enthalpy, ΔH(sub), of element 120 of 150 kJ/mol was estimated via a correlation between these quantities in group 2. Using the M-Au binding energies, the adsorption enthalpies, ΔH(ads), of element 120 of 172 kJ/mol on gold, 127 kJ/mol on platinum, and 50 kJ/mol on silver were estimated via a correlation with known ΔH(ads) in the group. These moderate values of ΔH(ads) are indicative of a possibility of chromatography adsorption studies of element 120 on these noble metal surfaces.

11.
J Chem Phys ; 136(3): 034308, 2012 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-22280761

RESUMEN

Fully relativistic, four-component density functional theory electronic structure calculations were performed for MBr(5), MOBr(3), MBr(6)(-), KMBr(6), and MBr(5)Cl(-) of group-5 elements Nb, Ta, and element 105, Db, with the aim to predict adsorption behaviour of the bromides in gas-phase chromatography experiments. It was shown that in the atmosphere of HBr/BBr(3), the pentabromides are rather stable, and their stability should increase in the row Nb < Db < Ta. Several mechanisms of adsorption were considered. In the case of adsorption by van der Waals forces, the sequence in volatility of the pentabromides should be Nb < Ta < Db, being in agreement with the sublimation enthalpies of the Nb and Ta pentabromides. In the case of adsorption by chemical forces (on a quartz surface modified with KBr∕KCl), formation of the MBr(5)L(-) (L = Cl, Br) complex should occur, so that the volatility should change in an opposite way, i.e., Nb > Ta > Db. This sequence is in agreement with the one observed in the "one-atom-at-a-time" chromatography experiments. Some other scenarios, such as surface oxide formation were also considered but found to be irrelevant.

12.
J Chem Phys ; 133(10): 104304, 2010 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-20849169

RESUMEN

Fully relativistic, four-component density functional theory electronic structure calculations were performed for the MAu dimers of the 7p elements, 113 through 118, and their 6p homologs, Tl through Rn. It was shown that the M-Au bond strength should decrease from the 6p to 7p homologs in groups 13 and 14, while it should stay about the same in groups 15 through 17 and even increase in group 18. This is in contrast with the decreasing trend in the M-M bond strength in groups 15 through 17. The reason for these trends is increasingly important relativistic effects on the np AOs of these elements, particularly their large spin-orbit splitting. Trends in the adsorption energies of the heaviest elements and their homologs on gold are expected to be related to those in the binding energies of MAu, while sublimation enthalpies are closely connected to the binding energies of the MM dimers. Lack of a correlation between the MAu and MM binding energies means that no correlation can also be expected between adsorption enthalpies on gold and sublimation enthalpies in groups 15 through 17. No linear correlation between these quantities is established in the row of the 6p elements, as well as no one is expected in the row of the 7p elements.


Asunto(s)
Oro/química , Metales Pesados/química , Simulación de Dinámica Molecular , Teoría Cuántica , Adsorción , Dimerización , Análisis Espectral , Propiedades de Superficie , Termodinámica
13.
J Chem Phys ; 132(19): 194314, 2010 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-20499970

RESUMEN

Fully relativistic density functional theory electronic structure calculations were performed for homonuclear dimers of the 7p elements, 113-118 and their 6p homologs, Tl through Rn. All the dimers of the heaviest elements, with the exception of (118)(2), were found to be weaker bound than their lighter homologs. The difference in the dissociation energy (D(e)) between the 6p and 7p homologs was shown to decrease from group 15 to group 17, with a reversal of the trend in group 18. A remarkable feature is a shift of the maximum in D(e)(M(2)) from group 15 in the third through sixth rows to group 16 in the seventh row. Strong relativistic effects on the 7p atomic orbitals, particularly, their large spin-orbit splitting, were shown to be responsible for these trends. Using the calculated D(e)(M(2)), the sublimation enthalpies, DeltaH(sub), of macroamounts, or formation enthalpies of gaseous atoms, DeltaH(f)(g), of the heaviest elements were estimated using a linear correlation between these quantities in the chemical groups. The newly estimated values are in good agreement with those obtained via a linear extrapolation from the lighter homologs in the groups.

14.
J Chem Phys ; 131(8): 084713, 2009 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-19725627

RESUMEN

Fully relativistic (four-component) density-functional theory calculations were performed for elements 112 and 114 and their lighter homologs, Hg and Pb, interacting with gold systems, from an atom to a Au(n) cluster simulating the Au(111) surface. Convergence of the adatom-metal cluster binding energies E(b) with cluster size was reached for n>90. Hg, Pb, and element 114 were found to preferably adsorb at the bridge position, while element 112 was found to preferably adsorb at a hollow site. Independently of the cluster size, the trend in E(b) is Pb>>114>Hg>112. The obtained E(b) for Pb and element 112 are in good agreement with the measured adsorption enthalpies of these elements on gold, while the Hg value is obviously underestimated, confirming the observation that adsorption takes place not on the surface but in it. A comparison of chemical bonding in various systems shows that element 114 should be more reactive than element 112: A relative inertness of the latter is caused by the strong relativistic stabilization of the 7s atomic orbital. On the contrary, van der Waals bonding in element 114 systems should be weaker than in those of element 112 due to its larger radius.

15.
J Chem Phys ; 129(14): 144106, 2008 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-19045133

RESUMEN

The interaction of the inert gases Rn and element 118 with various surfaces has been studied on the basis of fully relativistic ab initio Dirac-Coulomb CCSD(T) calculations of atomic properties. The calculated polarizability of element 118, 46.3 a.u., is the largest in group 18, the ionization potential is the lowest at 8.91 eV, and the estimated atomic radius is the largest, 4.55 a.u. These extreme values reflect, in addition to the general trends in the Periodic Table, the relativistic expansion and destabilization of the outer valence 7p(3/2) orbital. Van der Waals coefficients C(3) and adsorption enthalpies DeltaH(ads) of Ne through element 118 on noble metals and inert surfaces, such as quartz, ice, Teflon, and graphite, were calculated in a physisorption model using the atomic properties obtained. The C(3) coefficients were shown to steadily increase in group 18, while the increase in DeltaH(ads) from Ne to Rn does not continue to element 118: The large atomic radius of the latter element is responsible for a decrease in the interaction energy. We therefore predict that experimental distinction between Rn and 118 by adsorption on these types of surfaces will not be feasible. A possible candidate for separating the two elements is charcoal; further study is needed to test this possibility.

16.
J Phys Chem A ; 112(51): 13712-6, 2008 Dec 25.
Artículo en Inglés | MEDLINE | ID: mdl-19049424

RESUMEN

Fully relativistic ab initio Dirac-Coulomb Fock-space coupled cluster calculations were performed on Tl and element 113. The calculated polarizabilty of element 113, 29.85 au, is the smallest in group 13, except for B. The estimated atomic and van der Waals radii of element 113 are also the smallest among these elements. Using the calculated atomic properties and an adsorption model, adsorption enthalpies of elements Al through 113 on inert surfaces, such as Teflon and polyethylene, are predicted. The trends in the atomic properties and DeltaH(ads) in group 13 were found to reverse from In to element 113, reflecting the strong relativistic contraction and stabilization of the outer np(1/2) orbital, which are largest for element 113. The small values of DeltaH(ads) for element 113 on Teflon (14 kJ/mol) and polyethylene (16 kJ/mol) guarantee its transport from the target chamber to the chemistry set up, and the 6 kJ/mol difference relative to Tl values makes possible the separation and identification of the superheavy element on the inert surfaces.

17.
J Chem Phys ; 128(2): 024707, 2008 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-18205466

RESUMEN

The interaction of elements 112 and 114 with inert surfaces has been studied on the basis of fully relativistic ab initio Dirac-Coulomb CCSD(T) calculations of their atomic properties. The calculated polarizabilities of elements 112 and 114 are significantly lower than corresponding Hg and Pb values due to the relativistic contraction of the valence ns and np(12) orbitals, respectively, in the heavier elements. Due to the same reason, the estimated van der Waals radius of element 114 is smaller than that of Pb. The enthalpies of adsorption of Hg, Pb, and elements 112 and 114 on inert surfaces such as quartz, ice, and Teflon were predicted on the basis of these atomic calculations using a physisorption model. At the present level of accuracy, -DeltaH(ads) of element 112 on these surfaces is slightly (about 2 kJ/mol) larger than -DeltaH(ads)(Hg). The calculated -DeltaH(ads) of element 114 on quartz is about 7 kJ/mol and on Teflon is about 3 kJ/mol smaller than the respective values of -DeltaH(ads)(Pb). The trend of increasing -DeltaH(ads) in group 14 from C to Sn is thus reversed, giving decreasing values from Sn to Pb to element 114 due to the relativistic stabilization and contraction of the np(12) atomic orbitals. This is similar to trends shown by other atomic properties of these elements. The small difference in DeltaH(ads) of Pb and element 114 on inert surfaces obtained within a picture of physisorption contrasts with the large difference (more than 100 kJ/mol) in the chemical reactivity between these elements.

18.
J Chem Phys ; 127(13): 134310, 2007 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-17919027

RESUMEN

Fully relativistic (four-component) density-functional theory calculations were performed for intermetallic dimers MM', where M=Ge, Sn, Pb, and element 114, and MM'=group 10 elements (Ni, Pd, and Pt) and group 11 elements (Cu, Ag, and Au). PbM and 114M, where M are group 14 elements, were also considered. The results have shown that trends in spectroscopic properties-atomization energies D(e), vibrational frequencies omega(e), and bond lengths R(e), as a function of MM', are similar for compounds of Ge, Sn, Pb, and element 114, except for D(e) of PbNi and 114Ni. They were shown to be determined by trends in the energies and space distribution of the valence ns(MM')atomic orbitals (AOs). According to the results, element 114 should form the weakest bonding with Ni and Ag, while the strongest with Pt due to the largest involvement of the 5d(Pt) AOs. In turn, trends in the spectroscopic properties of MM' as a function of M were shown to be determined by the behavior of the np(1/2)(M) AOs. Overall, D(e) of the element 114 dimers are about 1 eV smaller and R(e) are about 0.2 a.u. larger than those of the corresponding Pb compounds. Such a decrease in bonding of the element 114 dimers is caused by the large SO splitting of the 7p orbitals and a decreasing contribution of the relativistically stabilized 7p(1/2)(114) AO. On the basis of the calculated D(e) for the dimers, adsorption enthalpies of element 114 on the corresponding metal surfaces were estimated: They were shown to be about 100-150 kJ/mol smaller than those of Pb.

19.
J Chem Phys ; 122(12): 124301, 2005 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-15836372

RESUMEN

The influence of relativistic effects on properties and volatility of the group-8 tetroxides MO4, where M=Ru, Os, and element 108, Hs, was studied on the basis of results of the fully relativistic (four component) and nonrelativistic density functional theory calculations. Relativistic effects were shown to increase bond strengths and decrease bond lengths in these molecules. They are responsible for a decrease in molecular polarizabilities and an increase in ionization potentials. The effects are much stronger in HsO4 than in the lighter congeners. Relativistic effects were also shown to slightly decrease dispersion interaction energies of RuO4, OsO4, and HsO4 with an inert (quartz or silicon nitride) surface, i.e., they increase volatility of these compounds as studied in the "one-atom-at-a-time" gas-phase chromatography experiments. They do, however, not influence the trend in group 8: both relativistically and nonrelativistically, volatility should change as RuO4

20.
Nature ; 418(6900): 859-62, 2002 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-12192405

RESUMEN

The periodic table provides a classification of the chemical properties of the elements. But for the heaviest elements, the transactinides, this role of the periodic table reaches its limits because increasingly strong relativistic effects on the valence electron shells can induce deviations from known trends in chemical properties. In the case of the first two transactinides, elements 104 and 105, relativistic effects do indeed influence their chemical properties, whereas elements 106 and 107 both behave as expected from their position within the periodic table. Here we report the chemical separation and characterization of only seven detected atoms of element 108 (hassium, Hs), which were generated as isotopes (269)Hs (refs 8, 9) and (270)Hs (ref. 10) in the fusion reaction between (26)Mg and (248)Cm. The hassium atoms are immediately oxidized to a highly volatile oxide, presumably HsO(4), for which we determine an enthalpy of adsorption on our detector surface that is comparable to the adsorption enthalpy determined under identical conditions for the osmium oxide OsO(4). These results provide evidence that the chemical properties of hassium and its lighter homologue osmium are similar, thus confirming that hassium exhibits properties as expected from its position in group 8 of the periodic table.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...