Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Phys Med Biol ; 68(6)2023 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-36584393

RESUMEN

This Roadmap paper covers the field of precision preclinical x-ray radiation studies in animal models. It is mostly focused on models for cancer and normal tissue response to radiation, but also discusses other disease models. The recent technological evolution in imaging, irradiation, dosimetry and monitoring that have empowered these kinds of studies is discussed, and many developments in the near future are outlined. Finally, clinical translation and reverse translation are discussed.


Asunto(s)
Radiometría , Animales , Rayos X , Radiometría/métodos , Radiografía , Modelos Animales , Fantasmas de Imagen
2.
Phys Med Biol ; 61(10): 3969-84, 2016 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-27156786

RESUMEN

The aim of this work is to compare time-resolved (TR) and time-integrated (TI) portal dosimetry, focussing on the role of an object's position with respect to the isocenter in volumetric modulated arc therapy (VMAT). Portal dose images (PDIs) are simulated and measured for different cases: a sphere (1), a bovine bone (2) and a patient geometry (3). For the simulated case (1) and the experimental case (2), several transformations are applied at different off-axis positions. In the patient case (3), three simple plans with different isocenters are created and pleural effusion is simulated in the patient. The PDIs before and after the sphere transformations, as well as the PDIs with and without simulated pleural effusion, are compared using a TI and TR gamma analysis. In addition, the performance of the TI and TR gamma analyses for the detection of real geometric changes in patients treated with clinical plans is investigated and a correlation analysis is performed between gamma fail rates and differences in dose volume histogram (DVH) metrics. The TI gamma analysis can show large differences in gamma fail rates for the same transformation at different off-axis positions (or for different plan isocenters). The TR gamma analysis, however, shows consistent gamma fail rates. For the detection of real geometric changes in patients treated with clinical plans, the TR gamma analysis has a higher sensitivity than the TI gamma analysis. However, the specificity for the TR gamma analysis is lower than for the TI gamma analysis. Both the TI and TR gamma fail rates show no correlation with changes in DVH metrics. This work shows that TR portal dosimetry is fundamentally superior to TI portal dosimetry, because it removes the strong dependence of the gamma fail rate on the off-axis position/plan isocenter. However, for 2D TR portal dosimetry, it is still difficult to interpret gamma fail rates in terms of changes in DVH metrics for patients treated with VMAT.


Asunto(s)
Posicionamiento del Paciente , Planificación de la Radioterapia Asistida por Computador/métodos , Radioterapia de Intensidad Modulada/métodos , Animales , Bovinos , Rayos gamma , Humanos , Radiometría/métodos , Dosificación Radioterapéutica
3.
Acta Oncol ; 54(9): 1501-7, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26179632

RESUMEN

BACKGROUND: Geometric changes are frequent during the course of treatment of lung cancer patients. This may potentially result in deviations between the planned and actual delivered dose. Electronic portal imaging device (EPID)-based integrated transit planar portal dosimetry (ITPD) is a fast method for absolute in-treatment dose verification. The aim of this study was to investigate if ITPD could detect geometric changes in lung cancer patients. MATERIALS AND METHODS: A total of 460 patients treated with volumetric modulated arc therapy (VMAT) following daily cone beam computed tomography (CT)-based setup were visually inspected for geometrical changes on a daily basis. Forty-six patients were subject to changes and had a re-CT and an adaptive treatment plan. The reasons for adaptation were: change in atelectasis (n = 18), tumor regression (n = 9), change in pleural effusion (n = 8) or other causes (n = 11). The ITPDs were calculated on both the initial planning CT and the re-CT and compared with a global gamma (γ) evaluation (criteria: 3%\3mm). A treatment fraction failed when the percentage of pixels failing in the radiation fields exceeded 10%. Dose-volume histograms (DVHs) were compared between the initial plan versus the plan re-calculated on the re-CT. RESULTS: The ITPD threshold method detected 76% of the changes in atelectasis, while only 50% of the tumor regression cases and 42% of the pleural effusion cases were detected. Only 10% of the cases adapted for other reasons were detected with ITPD. The method has a 17% false-positive rate. No significant correlations were found between changes in DVH metrics and γ fail-rates. CONCLUSIONS: This study showed that most cases with geometric changes caused by atelectasis could be captured by ITPD, however for other causes ITPD is not sensitive enough to detect the clinically relevant changes and no predictive power of ITPD was found.


Asunto(s)
Neoplasias Pulmonares/radioterapia , Radiometría/métodos , Radioterapia de Intensidad Modulada/métodos , Anciano , Carcinoma de Pulmón de Células no Pequeñas/diagnóstico por imagen , Carcinoma de Pulmón de Células no Pequeñas/radioterapia , Tomografía Computarizada de Haz Cónico , Femenino , Humanos , Imagenología Tridimensional , Neoplasias Pulmonares/diagnóstico por imagen , Masculino , Derrame Pleural Maligno/diagnóstico por imagen , Atelectasia Pulmonar/diagnóstico por imagen , Radioterapia Guiada por Imagen , Estudios Retrospectivos , Carcinoma Pulmonar de Células Pequeñas/diagnóstico por imagen , Carcinoma Pulmonar de Células Pequeñas/radioterapia
4.
Acta Oncol ; 54(9): 1483-9, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26219958

RESUMEN

BACKGROUND: Use of highly conformal radiotherapy in patients with head and neck carcinoma may lead to under-/overdosage of gross target volume (GTV) and organs at risk (OAR) due to changes in patients' anatomy. A method to achieve more effective radiation treatment combined with less toxicity is dose-guided radiotherapy (DGRT). The aim of this study was to evaluate discrepancies between planned and actually delivered radiation dose in head and neck patients and to identify predictive factors. METHODS: In this retrospective analysis, 20 patients with cT2-4 N0-3 M0 carcinoma originating from oropharynx, oral cavity, larynx and hypopharynx (Cohort 1), and seven patients with cT1-4 N0-3 M0 nasopharyngeal carcinoma (Cohort 2) treated with primary (chemo)radiotherapy and undergoing weekly kV-CBCT scans were included. Radiation dose was recalculated on 184 kV-CBCT images, which was quantified by D95% (GTV), Dmean (parotid and submandibular glands) and D2% (spinal cord). Predictive factors investigated for changes in these dose metrics were: gender, age, cT/N-stage, tumor grade, HPV-status, systemic therapy, body mass index at start of treatment, weight loss and volume change over the duration of the radiotherapy. RESULTS: There was no significant difference between the planned and delivered dose for GTV and OARs of Week 1 to subsequent weeks for Cohort 1. In Cohort 2, actually delivered Dmean to parotid glands was significant higher than planned dose (1.1 Gy, p = 0.002). No clinically relevant correlations between dose changes and predictive factors were found. CONCLUSION: Weekly dose calculations do not seem to improve dose delivery for patients with tumors of the oral cavity, oropharynx, larynx and hypopharynx. In patients with nasopharyngeal carcinoma, however, mid-treatment imaging may facilitate DGRT.


Asunto(s)
Tomografía Computarizada de Haz Cónico , Neoplasias de Cabeza y Cuello/radioterapia , Dosificación Radioterapéutica , Anciano , Anciano de 80 o más Años , Carcinoma de Células Escamosas/diagnóstico por imagen , Carcinoma de Células Escamosas/radioterapia , Quimioradioterapia , Femenino , Neoplasias de Cabeza y Cuello/diagnóstico por imagen , Humanos , Masculino , Persona de Mediana Edad , Planificación de la Radioterapia Asistida por Computador , Estudios Retrospectivos , Pérdida de Peso
5.
Phys Med Biol ; 59(20): 5973-85, 2014 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-25230002

RESUMEN

Modern external beam radiotherapy requires detailed verification and quality assurance so that confidence can be placed on both the delivery of a single treatment fraction and on the consistency of delivery throughout the treatment course. To verify dose distributions, a comparison between prediction and measurement must be made. Comparisons between two dose distributions are commonly performed using a Gamma evaluation which is a calculation of two quantities on a pixel by pixel basis; the dose difference, and the distance to agreement. By providing acceptance criteria (e.g. 3%, 3 mm), the function will find the most appropriate match within its two degrees of freedom. For complex dynamic treatments such as IMRT or VMAT it is important to verify the dose delivery in a time dependent manner and so a gamma evaluation that includes a degree of freedom in the time domain via a third parameter, time to agreement, is presented here. A C++ (mex) based gamma function was created that could be run on either CPU and GPU computing platforms that would allow a degree of freedom in the time domain. Simple test cases were created in both 2D and 3D comprising of simple geometrical shapes with well-defined boundaries varying over time. Changes of varying magnitude in either space or time were introduced and repeated gamma analyses were performed varying the criteria. A clinical VMAT case was also included, artificial air bubbles of varying size were introduced to a patient geometry, along with shifts of varying magnitude in treatment time. For all test cases where errors in distance, dose or time were introduced, the time dependent gamma evaluation could accurately highlight the errors.The time dependent gamma function presented here allows time to be included as a degree of freedom in gamma evaluations. The function allows for 2D and 3D data sets which are varying over time to be compared using appropriate criteria without penalising minor offsets of subsequent radiation fields in time.


Asunto(s)
Algoritmos , Planificación de la Radioterapia Asistida por Computador/métodos , Rayos gamma , Dosificación Radioterapéutica
6.
Phys Med Biol ; 59(16): 4749-68, 2014 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-25088064

RESUMEN

Methods to calibrate Megavoltage electronic portal imaging devices (EPIDs) for dosimetry have been previously documented for dynamic treatments such as intensity modulated radiotherapy (IMRT) using flattened beams and typically using integrated fields. While these methods verify the accumulated field shape and dose, the dose rate and differential fields remain unverified. The aim of this work is to provide an accurate calibration model for time dependent pre-treatment dose verification using amorphous silicon (a-Si) EPIDs in volumetric modulated arc therapy (VMAT) for both flattened and flattening filter free (FFF) beams. A general calibration model was created using a Varian TrueBeam accelerator, equipped with an aS1000 EPID, for each photon spectrum 6 MV, 10 MV, 6 MV-FFF, 10 MV-FFF. As planned VMAT treatments use control points (CPs) for optimization, measured images are separated into corresponding time intervals for direct comparison with predictions. The accuracy of the calibration model was determined for a range of treatment conditions. Measured and predicted CP dose images were compared using a time dependent gamma evaluation using criteria (3%, 3 mm, 0.5 sec). Time dependent pre-treatment dose verification is possible without an additional measurement device or phantom, using the on-board EPID. Sufficient data is present in trajectory log files and EPID frame headers to reliably synchronize and resample portal images. For the VMAT plans tested, significantly more deviation is observed when analysed in a time dependent manner for FFF and non-FFF plans than when analysed using only the integrated field. We show EPID-based pre-treatment dose verification can be performed on a CP basis for VMAT plans. This model can measure pre-treatment doses for both flattened and unflattened beams in a time dependent manner which highlights deviations that are missed in integrated field verifications.


Asunto(s)
Diagnóstico por Imagen , Equipos y Suministros Eléctricos , Radiometría/instrumentación , Radioterapia de Intensidad Modulada/normas , Calibración , Humanos , Planificación de la Radioterapia Asistida por Computador , Factores de Tiempo
7.
Acta Oncol ; 52(7): 1484-9, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24000957

RESUMEN

UNLABELLED: Atelectasis in lung cancer patients can change rapidly during a treatment course, which may displace the tumor/healthy tissues, or change tissue densities locally. This may result in differences between the planned and the actually delivered dose. With complex delivery techniques treatment verification is essential and inter-fractional adaptation may be necessary. We present the first clinical results of treatment adaptation based on an in-house developed three-dimensional (3D) portal dose measurement (PDM) system. MATERIAL AND METHODS: A method was developed for 3D PDM combined with cone beam computed tomography (kV-CBCT) imaging. Lung cancer patients are monitored routinely with this imaging technique. During treatment, the first three fractions are analyzed with 3D PDM and weekly thereafter. The reconstructed measured dose is compared to the planned dose using dose-volume histograms and a γ evaluation. Patients having |γ|> 1 in more than 5% of the (primary tumor or organ at risk) volume were subjected to further analysis. In this study we show the PDM dose changes for five patients. RESULTS: We detected relevant dose changes induced by changes in atelectasis in the presented cases. Two patients received two treatment adaptations after being detected with PDM confirmed by visual inspection of the kV-CBCTs, and in two other patients the radiation treatment plan was adapted once. In one case no dose delivery change was detected with PDM. CONCLUSION: The first clinical patients show that 3D PDM combined with kV-CBCT is a valuable quality assurance tool for detecting anatomical alterations and their dosimetric consequences during the course of radiotherapy. In our clinic, 3D PDM is fully automated for ease and speed of the procedure, and for minimization of human error. The technique is able to flag patients with suspected dose discrepancies for potential adaptation of the treatment plan.


Asunto(s)
Tomografía Computarizada de Haz Cónico , Procesamiento de Imagen Asistido por Computador , Neoplasias Pulmonares/radioterapia , Atelectasia Pulmonar/radioterapia , Radiometría , Radioterapia Guiada por Imagen , Radioterapia de Intensidad Modulada/efectos adversos , Algoritmos , Humanos , Imagenología Tridimensional , Pronóstico , Atelectasia Pulmonar/etiología , Intensificación de Imagen Radiográfica
8.
Med Phys ; 38(7): 4032-5, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21859001

RESUMEN

PURPOSE: A widely accepted method to quantify differences in dose distributions is the gamma (gamma) evaluation. Currently, almost all gamma implementations utilize the central processing unit (CPU). Recently, the graphics processing unit (GPU) has become a powerful platform for specific computing tasks. In this study, we describe the implementation of a 3D gamma evaluation using a GPU to improve calculation time. METHODS: The gamma evaluation algorithm was implemented on an NVIDIA Tesla C2050 GPU using the compute unified device architecture (CUDA). First, several cubic virtual phantoms were simulated. These phantoms were tested with varying dose cube sizes and set-ups, introducing artificial dose differences. Second, to show applicability in clinical practice, five patient cases have been evaluated using the 3D dose distribution from a treatment planning system as the reference and the delivered dose determined during treatment as the comparison. A calculation time comparison between the CPU and GPU was made with varying thread-block sizes including the option of using texture or global memory. RESULTS: A GPU over CPU speed-up of 66 +/- 12 was achieved for the virtual phantoms. For the patient cases, a speed-up of 57 +/- 15 using the GPU was obtained. A thread-block size of 16 x 16 performed best in all cases. The use of texture memory improved the total calculation time, especially when interpolation was applied. Differences between the CPU and GPU gammas were negligible. CONCLUSIONS: The GPU and its features, such as texture memory, decreased the calculation time for gamma evaluations considerably without loss of accuracy.


Asunto(s)
Algoritmos , Neoplasias/radioterapia , Análisis Numérico Asistido por Computador , Radiometría/métodos , Planificación de la Radioterapia Asistida por Computador/métodos , Radioterapia Conformacional/métodos , Procesamiento de Señales Asistido por Computador , Rayos gamma/uso terapéutico , Humanos , Dosificación Radioterapéutica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...