Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Am J Bot ; 108(7): 1143-1165, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34254285

RESUMEN

PREMISE: Comprising five families that vastly differ in species richness-ranging from Gelsemiaceae with 13 species to the Rubiaceae with 13,775 species-members of the Gentianales are often among the most species-rich and abundant plants in tropical forests. Despite considerable phylogenetic work within particular families and genera, several alternative topologies for family-level relationships within Gentianales have been presented in previous studies. METHODS: Here we present a phylogenomic analysis based on nuclear genes targeted by the Angiosperms353 probe set for approximately 150 species, representing all families and approximately 85% of the formally recognized tribes. We were able to retrieve partial plastomes from off-target reads for most taxa and infer phylogenetic trees for comparison with the nuclear-derived trees. RESULTS: We recovered high support for over 80% of all nodes. The plastid and nuclear data are largely in agreement, except for some weakly to moderately supported relationships. We discuss the implications of our results for the order's classification, highlighting points of increased support for previously uncertain relationships. Rubiaceae is sister to a clade comprising (Gentianaceae + Gelsemiaceae) + (Apocynaceae + Loganiaceae). CONCLUSIONS: The higher-level phylogenetic relationships within Gentianales are confidently resolved. In contrast to recent studies, our results support the division of Rubiaceae into two subfamilies: Cinchonoideae and Rubioideae. We do not formally recognize Coptosapelteae and Luculieae within any particular subfamily but treat them as incertae sedis. Our framework paves the way for further work on the phylogenetics, biogeography, morphological evolution, and macroecology of this important group of flowering plants.


Asunto(s)
Gentianaceae , Gentianales , Rubiaceae , Filogenia , Plastidios/genética
2.
Front Plant Sci ; 8: 391, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28382048

RESUMEN

Considerable inter- and intraspecific variation with respect to the quantity and composition of plant natural products exists. The processes that drive this variation remain largely unknown. Understanding which factors determine chemical diversity has the potential to shed light on plant defenses against herbivores and diseases and accelerate drug discovery. For centuries, Cinchona alkaloids were the primary treatment of malaria. Using Cinchona calisaya as a model, we generated genetic profiles of leaf samples from four plastid (trnL-F, matK, rps16, and ndhF) and one nuclear (ITS) DNA regions from twenty-two C. calisaya stands sampled in the Yungas region of Bolivia. Climatic and soil parameters were characterized and bark samples were analyzed for content of the four major alkaloids using HPLC-UV to explore the utility of evolutionary history (phylogeny) in determining variation within species of these compounds under natural conditions. A significant phylogenetic signal was found for the content of two out of four major Cinchona alkaloids (quinine and cinchonidine) and their total content. Climatic parameters, primarily driven by changing altitude, predicted 20.2% of the overall alkaloid variation, and geographical separation accounted for a further 9.7%. A clade of high alkaloid producing trees was identified that spanned a narrow range of altitudes, from 1,100 to 1,350 m. However, climate expressed by altitude was not a significant driver when accounting for phylogeny, suggesting that the chemical diversity is primarily driven by phylogeny. Comparisons of the relative effects of both environmental and genetic variability in determining plant chemical diversity have scarcely been performed at the genotypic level. In this study we demonstrate there is an essential need to do so if the extensive genotypic variation in plant biochemistry is to be fully understood.

3.
Glob Ecol Biogeogr ; 24(8): 973-984, 2015 08.
Artículo en Inglés | MEDLINE | ID: mdl-27656106

RESUMEN

AIM: Massive digitalization of natural history collections is now leading to a steep accumulation of publicly available species distribution data. However, taxonomic errors and geographical uncertainty of species occurrence records are now acknowledged by the scientific community - putting into question to what extent such data can be used to unveil correct patterns of biodiversity and distribution. We explore this question through quantitative and qualitative analyses of uncleaned versus manually verified datasets of species distribution records across different spatial scales. LOCATION: The American tropics. METHODS: As test case we used the plant tribe Cinchoneae (Rubiaceae). We compiled four datasets of species occurrences: one created manually and verified through classical taxonomic work, and the rest derived from GBIF under different cleaning and filling schemes. We used new bioinformatic tools to code species into grids, ecoregions, and biomes following WWF's classification. We analysed species richness and altitudinal ranges of the species. RESULTS: Altitudinal ranges for species and genera were correctly inferred even without manual data cleaning and filling. However, erroneous records affected spatial patterns of species richness. They led to an overestimation of species richness in certain areas outside the centres of diversity in the clade. The location of many of these areas comprised the geographical midpoint of countries and political subdivisions, assigned long after the specimens had been collected. MAIN CONCLUSION: Open databases and integrative bioinformatic tools allow a rapid approximation of large-scale patterns of biodiversity across space and altitudinal ranges. We found that geographic inaccuracy affects diversity patterns more than taxonomic uncertainties, often leading to false positives, i.e. overestimating species richness in relatively species poor regions. Public databases for species distribution are valuable and should be more explored, but under scrutiny and validation by taxonomic experts. We suggest that database managers implement easy ways of community feedback on data quality.

4.
FEMS Microbiol Ecol ; 81(2): 364-72, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22404179

RESUMEN

Burkholderia endophytes were identified within the leaves of non-nodulated members of the genus Psychotria. In contrast to leaf-nodulated Psychotria species, which are known to accommodate their endosymbionts into specialized endosymbiont-housing structures, non-nodulated species lack bacterial leaf nodules and harbor endosymbionts intercellularly between mesophyll cells. Based on molecular data (rps16, trnG, and trnLF), the phylogenetic reconstruction of the host plants revealed a separate origin of leaf-nodulated and non-nodulated Psychotria species. Despite a distinct phylogenetic position of the two host clades, the endophytes of the non-nodulated plants were not placed into a single monophyletic group but were found to be closely related to the leaf-nodulated endosymbionts. The observation of genetically similar endophytes in both nodulated and non-nodulated Psychotria lineages suggests that the host plant is playing a crucial role in the induction of leaf nodule formation. Moreover, the concentration of endosymbionts into specialized leaf nodules may be considered as a more derived evolutionary adaptation of the host plant, serving as an interface structure to facilitate metabolic exchange between plant and endosymbiont.


Asunto(s)
Burkholderia/genética , Endófitos/genética , Filogenia , Hojas de la Planta/microbiología , Psychotria/microbiología , Evolución Biológica , Burkholderia/clasificación , Burkholderia/aislamiento & purificación , ADN Bacteriano/genética , Endófitos/clasificación , Endófitos/aislamiento & purificación , Análisis de Secuencia de ADN , Simbiosis
5.
Am J Bot ; 97(12): 1961-81, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21616845

RESUMEN

PREMISE OF THE STUDY: The Condamineeae have in previous molecular studies been shown to be part of an early-divergent clade within the subfamily Ixoroideae, together with the tribes Calycophylleae, and Hippotideae, and genera of the former Cinchoneae and Rondeletieae. Generic relationships within this clade have, however, remained largely unresolved. • METHODS: In this study, the systematics of the Condamineeae was further examined by phylogenetic reconstruction of six cpDNA regions and one nrDNA region using parsimony and Bayesian Markov chain Monte Carlo inference. Morphological character evolution within the tribe was assessed by ancestral state reconstruction using likelihood optimization of characters onto Bayesian trees. • KEY RESULTS: Calycophylleae appears polyphyletic. "Hippotideae" is monophyletic but nested within the Condamineeae. The phylogenetic hypotheses presented support a resurrection of the genera Holtonia, Schizocalyx, and Semaphyllanthe. Furthermore, Bathysa is found to be polyphyletic, Tresanthera is found nested within Rustia, and the taxonomically disputed genus Dialypetalanthus is here shown to be sister to a Bothriospora-Wittmackanthus clade. Morphological ancestral state reconstructions indicate that protogyny have evolved at least two times within the tribe and that indehiscent fruits, loculicidal fruit dehiscence, and intrapetiolar stipules have evolved independently several times. The occurrence of calycophylls (leaf-like calyx lobes), poricidal anthers, and winged seeds also appear homoplastic within the tribe. • CONCLUSIONS: A diagnosis and delimitation of the tribe Condamineeae is presented, with taxonomic proposals to synonymize Tresanthera and to transfer several species of Bathysa as well as Phitopis to a resurrected Schizocalyx.

6.
Proc Natl Acad Sci U S A ; 106(24): 9749-54, 2009 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-19470489

RESUMEN

Recent phylogenetic studies have revealed the major role played by the uplift of the Andes in the extraordinary diversification of the Neotropical flora. These studies, however, have typically considered the Andean uplift as a single, time-limited event fostering the evolution of highland elements. This contrasts with geological reconstructions indicating that the uplift occurred in discrete periods from west to east and that it affected different regions at different times. We introduce an approach for integrating Andean tectonics with biogeographic reconstructions of Neotropical plants, using the coffee family (Rubiaceae) as a model group. The distribution of this family spans highland and montane habitats as well as tropical lowlands of Central and South America, thus offering a unique opportunity to study the influence of the Andean uplift on the entire Neotropical flora. Our results suggest that the Rubiaceae originated in the Paleotropics and used the boreotropical connection to reach South America. The biogeographic patterns found corroborate the existence of a long-lasting dispersal barrier between the Northern and Central Andes, the "Western Andean Portal." The uplift of the Eastern Cordillera ended this barrier, allowing dispersal of boreotropical lineages to the South, but gave rise to a huge wetland system ("Lake Pebas") in western Amazonia that prevented in situ speciation and floristic dispersal between the Andes and Amazonia for at least 6 million years. Here, we provide evidence of these events in plants.


Asunto(s)
Evolución Biológica , Rubiaceae/genética , Biodiversidad , Datos de Secuencia Molecular , Rubiaceae/clasificación , América del Sur
7.
Evolution ; 61(7): 1675-94, 2007 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-17598748

RESUMEN

A phylogenetic approach was taken to investigate the evolutionary history of seed appendages in the plant family Polygalaceae (Fabales) and determine which factors might be associated with evolution of elaiosomes through comparisons to abiotic (climate) and biotic (ant species number and abundance) timelines. Molecular datasets from three plastid regions representing 160 species were used to reconstruct a phylogenetic tree of the order Fabales, focusing on Polygalaceae. Bayesian dating methods were used to estimate the age of the appearance of ant-dispersed elaiosomes in Polygalaceae, shown by likelihood optimizations to have a single origin in the family. Topology-based tests indicated a diversification rate shift associated with appearance of caruncular elaiosomes. We show that evolution of the caruncular elaiosome type currently associated with ant dispersal occurred 54.0-50.5 million year ago. This is long after an estimated increase in ant lineages in the Late Cretaceous based on molecular studies, but broadly concomitant with increasing global temperatures culminating in the Late Paleocene-Early Eocene thermal maxima. These results suggest that although most major ant clades were present when elaiosomes appeared, the environmental significance of elaiosomes may have been an important factor in success of elaiosome-bearing lineages. Ecological abundance of ants is perhaps more important than lineage numbers in determining significance of ant dispersal. Thus, our observation that elaiosomes predate increased ecological abundance of ants inferred from amber deposits could be indicative of an initial abiotic environmental function.


Asunto(s)
Hormigas/fisiología , Evolución Biológica , Polygalaceae/genética , Animales , Teorema de Bayes , Fósiles , Filogenia , Polygalaceae/clasificación , Reacción en Cadena de la Polimerasa , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...