Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 182
Filtrar
1.
Dev Cell ; 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38593802

RESUMEN

Precise regulation of cell proliferation and differentiation is vital for organ morphology. Rice palea, serving as sepal, comprises two distinct regions: the marginal region (MRP) and body of palea (BOP), housing heterogeneous cell populations, which makes it an ideal system for studying organ morphogenesis. We report that the transcription factor (TF) REP1 promotes epidermal cell proliferation and differentiation in the BOP, resulting in hard silicified protrusion cells, by regulating the cyclin-dependent kinase gene, OsCDKB1;1. Conversely, TFs OsMADS6 and OsMADS32 are expressed exclusively in the MRP, where they limit cell division rates by inhibiting OsCDKB2;1 expression and promote endoreduplication, yielding elongated epidermal cells. Furthermore, reciprocal inhibition between the OsMADS6-OsMADS32 complex and REP1 fine-tunes the balance between cell division and differentiation during palea morphogenesis. We further show the functional conservation of these organ identity genes in heterogeneous cell growth in Arabidopsis, emphasizing a critical framework for controlling cellular heterogeneity in organ morphogenesis.

2.
Proc Natl Acad Sci U S A ; 121(15): e2321759121, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38579009

RESUMEN

Adjacent plant cells are connected by specialized cell wall regions, called middle lamellae, which influence critical agricultural characteristics, including fruit ripening and organ abscission. Middle lamellae are enriched in pectin polysaccharides, specifically homogalacturonan (HG). Here, we identify a plant-specific Arabidopsis DUF1068 protein, called NKS1/ELMO4, that is required for middle lamellae integrity and cell adhesion. NKS1 localizes to the Golgi apparatus and loss of NKS1 results in changes to Golgi structure and function. The nks1 mutants also display HG deficient phenotypes, including reduced seedling growth, changes to cell wall composition, and tissue integrity defects. These phenotypes are comparable to qua1 and qua2 mutants, which are defective in HG biosynthesis. Notably, genetic interactions indicate that NKS1 and the QUAs work in a common pathway. Protein interaction analyses and modeling corroborate that they work together in a stable protein complex with other pectin-related proteins. We propose that NKS1 is an integral part of a large pectin synthesis protein complex and that proper function of this complex is important to support Golgi structure and function.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Adhesión Celular/genética , Pectinas/metabolismo , Aparato de Golgi/genética , Aparato de Golgi/metabolismo , Pared Celular/metabolismo
3.
Cell Surf ; 11: 100121, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38405175

RESUMEN

Plant cell wall researchers were asked their view on what the major unanswered questions are in their field. This article summarises the feedback that was received from them in five questions. In this issue you can find equivalent syntheses for researchers working on bacterial, unicellular parasite and fungal systems.

4.
PLoS One ; 19(2): e0292149, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38358988

RESUMEN

Plant cells possess robust and flexible cell walls composed primarily of cellulose, a polysaccharide that provides structural support and enables cell expansion. Cellulose is synthesised by the Cellulose Synthase A (CESA) catalytic subunits, which form cellulose synthase complexes (CSCs). While significant progress has been made in unravelling CSC function, the trafficking of CSCs and the involvement of post-translational modifications in cellulose synthesis remain poorly understood. In order to deepen our understanding of cellulose biosynthesis, this study utilised immunoprecipitation techniques with CESA6 as the bait protein to explore the CSC and its interactors. We have successfully identified the essential components of the CSC complex and, notably, uncovered novel interactors associated with CSC trafficking, post-translational modifications, and the coordination of cell wall synthesis. Moreover, we identified TIP GROWTH DEFECTIVE 1 (TIP1) protein S-acyl transferases (PATs) as an interactor of the CSC complex. We confirmed the interaction between TIP1 and the CSC complex through multiple independent approaches. Further analysis revealed that tip1 mutants exhibited stunted growth and reduced levels of crystalline cellulose in leaves. These findings suggest that TIP1 positively influences cellulose biosynthesis, potentially mediated by its role in the S-acylation of the CSC complex.


Asunto(s)
Aciltransferasas , Proteínas de Arabidopsis , Arabidopsis , Celulosa , Glucosiltransferasas , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Pared Celular/metabolismo , Celulosa/metabolismo , Glucosiltransferasas/metabolismo , Aciltransferasas/metabolismo
5.
Am J Hum Genet ; 111(1): 82-95, 2024 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-38035881

RESUMEN

Autosomal-dominant ataxia with sensory and autonomic neuropathy is a highly specific combined phenotype that we described in two Swedish kindreds in 2014; its genetic cause had remained unknown. Here, we report the discovery of exonic GGC trinucleotide repeat expansions, encoding poly-glycine, in zinc finger homeobox 3 (ZFHX3) in these families. The expansions were identified in whole-genome datasets within genomic segments that all affected family members shared. Non-expanded alleles carried one or more interruptions within the repeat. We also found ZFHX3 repeat expansions in three additional families, all from the region of Skåne in southern Sweden. Individuals with expanded repeats developed balance and gait disturbances at 15 to 60 years of age and had sensory neuropathy and slow saccades. Anticipation was observed in all families and correlated with different repeat lengths determined through long-read sequencing in two family members. The most severely affected individuals had marked autonomic dysfunction, with severe orthostatism as the most disabling clinical feature. Neuropathology revealed p62-positive intracytoplasmic and intranuclear inclusions in neurons of the central and enteric nervous system, as well as alpha-synuclein positivity. ZFHX3 is located within the 16q22 locus, to which spinocerebellar ataxia type 4 (SCA4) repeatedly had been mapped; the clinical phenotype in our families corresponded well with the unique phenotype described in SCA4, and the original SCA4 kindred originated from Sweden. ZFHX3 has known functions in neuronal development and differentiation n both the central and peripheral nervous system. Our findings demonstrate that SCA4 is caused by repeat expansions in ZFHX3.


Asunto(s)
Ataxia Cerebelosa , Ataxias Espinocerebelosas , Degeneraciones Espinocerebelosas , Humanos , Expansión de Repetición de Trinucleótido/genética , Ataxias Espinocerebelosas/genética , Ataxia/genética , Ataxia Cerebelosa/genética , Fenotipo , Degeneraciones Espinocerebelosas/genética , Proteínas de Homeodominio/genética
8.
Plant Physiol ; 194(2): 1204-1217, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-37823515

RESUMEN

In the model plant Arabidopsis (Arabidopsis thaliana), the absence of the essential macro-nutrient phosphate reduces primary root growth through decreased cell division and elongation, requiring alterations to the polysaccharide-rich cell wall surrounding the cells. Despite its importance, the regulation of cell wall synthesis in response to low phosphate levels is not well understood. In this study, we show that plants increase cellulose synthesis in roots under limiting phosphate conditions, which leads to changes in the thickness and structure of the cell wall. These changes contribute to the reduced growth of primary roots in low-phosphate conditions. Furthermore, we found that the cellulose synthase complex (CSC) activity at the plasma membrane increases during phosphate deficiency. Moreover, we show that this increase in the activity of the CSC is likely due to alterations in the phosphorylation status of cellulose synthases in low-phosphate conditions. Specifically, phosphorylation of CELLULOSE SYNTHASE 1 (CESA1) at the S688 site decreases in low-phosphate conditions. Phosphomimic versions of CESA1 with an S688E mutation showed significantly reduced cellulose induction and primary root length changes in low-phosphate conditions. Protein structure modeling suggests that the phosphorylation status of S688 in CESA1 could play a role in stabilizing and activating the CSC. This mechanistic understanding of root growth regulation under limiting phosphate conditions provides potential strategies for changing root responses to soil phosphate content.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/metabolismo , Fosfatos/metabolismo , Arabidopsis/metabolismo , Mutación , Celulosa/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/metabolismo
9.
Mol Plant ; 17(2): 359-361, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38134922
10.
Nat Commun ; 14(1): 7442, 2023 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-37978293

RESUMEN

As one of the major components of plant cell walls, cellulose is crucial for plant growth and development. Cellulose is synthesized by cellulose synthase (CesA) complexes (CSCs), which are trafficked and delivered from the Golgi apparatus to the plasma membrane. How CesAs are released from Golgi remains largely unclear. In this study, we observed that STELLO (STL) family proteins localized at a group of small CesA-containing compartments called Small CesA compartments (SmaCCs) or microtubule-associated CesA compartments (MASCs). The STL-labeled SmaCCs/MASCs were directly derived from Golgi through a membrane-stretching process: membrane-patches of Golgi attached to cortical microtubules, which led to emergence of membrane-tails that finally ruptured to generate SmaCCs/MASCs associated with the cortical microtubules. While myosin propelled the movement of Golgi along actin filaments to stretch the tails, the CesA-microtubule linker protein, CSI1/POM2 was indispensable for the tight anchor of the membrane-tail ends at cortical microtubules. Together, our data reveal a non-canonical delivery route to the plasma membrane of a major enzyme complex in plant biology.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Actomiosina/metabolismo , Microtúbulos/metabolismo , Glucosiltransferasas/genética , Glucosiltransferasas/metabolismo , Citoesqueleto de Actina/metabolismo , Aparato de Golgi/metabolismo , Celulosa/metabolismo , Proteínas Portadoras/metabolismo
11.
Carbohydr Polym ; 321: 121336, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37739487

RESUMEN

Raw starch is commonly modified to enhance its functionality for industrial applications. There is increasing demand for 'green' modified starches from both end-consumers and producers. It is well known that environmental conditions are key factors that determine plant growth and yield. An increasing number of studies suggest growth conditions can expand affect starch structure and functionality. In this review, we summarized how water, heat, high nitrogen, salinity, shading, CO2 stress affect starch biosynthesis and physicochemical properties. We define these treatments as a fifth type of starch modification method - agricultural modification - in addition to chemical, physical, enzymatic and genetic methods. In general, water stress decreases peak viscosity and gelatinization enthalpy of starch, and high temperature stress increases starch gelatinization enthalpy and temperature. High nitrogen increases total starch content and regulates starch viscosity. Salinity stress mainly regulates starch and amylose content, both of which are genotype-dependent. Shading stress and CO2 stress can both increase starch granule size, but these have different effects on amylose content and amylopectin structure. Compared with other modification methods, agricultural modification has the advantage of operating at a large scale and a low cost and can help meet the ever-rising market of clean-label foods and ingredients.


Asunto(s)
Amilosa , Almidón , Dióxido de Carbono , Amilopectina , Nitrógeno
12.
Plant Physiol ; 194(1): 137-152, 2023 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-37647538

RESUMEN

The plant cell wall (CW) is one of the most important physical barriers that phytopathogens must conquer to invade their hosts. This barrier is a dynamic structure that responds to pathogen infection through a complex network of immune receptors, together with CW-synthesizing and CW-degrading enzymes. Callose deposition in the primary CW is a well-known physical response to pathogen infection. Notably, callose and cellulose biosynthesis share an initial substrate, UDP-glucose, which is the main load-bearing component of the CW. However, how these 2 critical biosynthetic processes are balanced during plant-pathogen interactions remains unclear. Here, using 2 different pathogen-derived molecules, bacterial flagellin (flg22) and the diffusible signal factor (DSF) produced by Xanthomonas campestris pv. campestris, we show a negative correlation between cellulose and callose biosynthesis in Arabidopsis (Arabidopsis thaliana). By quantifying the abundance of callose and cellulose under DSF or flg22 elicitation and characterizing the dynamics of the enzymes involved in the biosynthesis and degradation of these 2 polymers, we show that the balance of these 2 CW components is mediated by the activity of a ß-1,3-glucanase (BG2). Our data demonstrate balanced cellulose and callose biosynthesis during plant immune responses.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Reconocimiento de Inmunidad Innata , Glucanos/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Celulosa/metabolismo , Inmunidad de la Planta
13.
14.
Front Plant Sci ; 14: 1156478, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37284726

RESUMEN

During the last century, fluorescence microscopy has played a pivotal role in a range of scientific discoveries. The success of fluorescence microscopy has prevailed despite several shortcomings like measurement time, photobleaching, temporal resolution, and specific sample preparation. To bypass these obstacles, label-free interferometric methods have been developed. Interferometry exploits the full wavefront information of laser light after interaction with biological material to yield interference patterns that contain information about structure and activity. Here, we review recent studies in interferometric imaging of plant cells and tissues, using techniques such as biospeckle imaging, optical coherence tomography, and digital holography. These methods enable quantification of cell morphology and dynamic intracellular measurements over extended periods of time. Recent investigations have showcased the potential of interferometric techniques for precise identification of seed viability and germination, plant diseases, plant growth and cell texture, intracellular activity and cytoplasmic transport. We envision that further developments of these label-free approaches, will allow for high-resolution, dynamic imaging of plants and their organelles, ranging in scales from sub-cellular to tissue and from milliseconds to hours.

15.
16.
Curr Biol ; 33(9): 1865, 2023 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-37160083
17.
Curr Biol ; 33(7): R251-R254, 2023 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-37040702

RESUMEN

Cellulose is the chief constituent of the plant cell wall and therefore is the most abundant biopolymer on Earth. However, cellulose synthesis is not limited to the plant kingdom: it is also found in a wide variety of bacteria, as well as in oomycetes, algae, slime mold, and urochordates, which are the only animals that synthesize cellulose. Nevertheless, cellulose synthesis has been mainly studied in plants and bacteria. In plants, cellulose confers mechanical support and protection against environmental stresses, and guides anisotropic cell growth. In bacteria, cellulose secretion is associated with biofilm formation, which protects cells from stresses or host immune responses and allows for community synergy in colonizing surfaces and capturing nutrients. In the context of our society, cellulose is an important part of woody plant biomass and is thus a renewable resource crucial for many industries, whereas bacterial cellulose is used for a plethora of biomedical and bioengineering applications. In addition, biofilms can reduce the susceptibility of bacteria to antibacterial agents and thus increase infection risk; understanding the molecular mechanism behind cellulose synthesis and biofilm formation is therefore of prime importance.In this primer, we aim to highlight the main differences as well as the common features of the molecular mechanism shared by the many species synthesizing cellulose across kingdoms.


Asunto(s)
Biopelículas , Celulosa , Animales , Plantas/metabolismo , Membrana Celular/metabolismo , Pared Celular/metabolismo , Bacterias/metabolismo
19.
STAR Protoc ; 4(2): 102157, 2023 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-36917605

RESUMEN

Plant roots sense salt gradients in soil to avoid saline environments through halotropism. Here, we present a protocol to study halotropism with an optimized split-agar system that simulates the salt gradient in soil. We describe steps for preparation of the split-agar system, measurement of Na+, and observation of root bending. We then detail segmentation of root cells and visualization of microtubules and cellulose synthases. This system is simple to operate and has broader applications, such as hydrotropism and chemotropism. For complete details on the use and execution of this protocol, please refer to Yu et al. (2022).1.

20.
PLoS One ; 18(3): e0281156, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36893151

RESUMEN

Membranous glomerulonephritis (MGN) is a common cause of nephrotic syndrome in adults, mediated by glomerular antibody deposition to an increasing number of newly recognised antigens. Previous case reports have suggested an association between patients with anti-contactin-1 (CNTN1)-mediated neuropathies and MGN. In an observational study we investigated the pathobiology and extent of this potential cause of MGN by examining the association of antibodies against CNTN1 with the clinical features of a cohort of 468 patients with suspected immune-mediated neuropathies, 295 with idiopathic MGN, and 256 controls. Neuronal and glomerular binding of patient IgG, serum CNTN1 antibody and protein levels, as well as immune-complex deposition were determined. We identified 15 patients with immune-mediated neuropathy and concurrent nephrotic syndrome (biopsy proven MGN in 12/12), and 4 patients with isolated MGN from an idiopathic MGN cohort, all seropositive for IgG4 CNTN1 antibodies. CNTN1-containing immune complexes were found in the renal glomeruli of patients with CNTN1 antibodies, but not in control kidneys. CNTN1 peptides were identified in glomeruli by mass spectroscopy. CNTN1 seropositive patients were largely resistant to first-line neuropathy treatments but achieved a good outcome with escalation therapies. Neurological and renal function improved in parallel with suppressed antibody titres. The reason for isolated MGN without clinical neuropathy is unclear. We show that CNTN1, found in peripheral nerves and kidney glomeruli, is a common target for autoantibody-mediated pathology and may account for between 1 and 2% of idiopathic MGN cases. Greater awareness of this cross-system syndrome should facilitate earlier diagnosis and more timely use of effective treatment.


Asunto(s)
Glomerulonefritis Membranosa , Glomerulonefritis , Enfermedades Renales , Síndrome Nefrótico , Enfermedades del Sistema Nervioso Periférico , Adulto , Humanos , Glomerulonefritis Membranosa/patología , Síndrome Nefrótico/patología , Contactina 1 , Glomérulos Renales/patología , Riñón/patología , Enfermedades Renales/patología , Enfermedades del Sistema Nervioso Periférico/patología , Glomerulonefritis/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...