Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Nature ; 616(7955): 123-131, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36991119

RESUMEN

The use of omic modalities to dissect the molecular underpinnings of common diseases and traits is becoming increasingly common. But multi-omic traits can be genetically predicted, which enables highly cost-effective and powerful analyses for studies that do not have multi-omics1. Here we examine a large cohort (the INTERVAL study2; n = 50,000 participants) with extensive multi-omic data for plasma proteomics (SomaScan, n = 3,175; Olink, n = 4,822), plasma metabolomics (Metabolon HD4, n = 8,153), serum metabolomics (Nightingale, n = 37,359) and whole-blood Illumina RNA sequencing (n = 4,136), and use machine learning to train genetic scores for 17,227 molecular traits, including 10,521 that reach Bonferroni-adjusted significance. We evaluate the performance of genetic scores through external validation across cohorts of individuals of European, Asian and African American ancestries. In addition, we show the utility of these multi-omic genetic scores by quantifying the genetic control of biological pathways and by generating a synthetic multi-omic dataset of the UK Biobank3 to identify disease associations using a phenome-wide scan. We highlight a series of biological insights with regard to genetic mechanisms in metabolism and canonical pathway associations with disease; for example, JAK-STAT signalling and coronary atherosclerosis. Finally, we develop a portal ( https://www.omicspred.org/ ) to facilitate public access to all genetic scores and validation results, as well as to serve as a platform for future extensions and enhancements of multi-omic genetic scores.


Asunto(s)
Enfermedad de la Arteria Coronaria , Multiómica , Humanos , Enfermedad de la Arteria Coronaria/genética , Enfermedad de la Arteria Coronaria/metabolismo , Metabolómica/métodos , Fenotipo , Proteómica/métodos , Aprendizaje Automático , Negro o Afroamericano/genética , Asiático/genética , Pueblo Europeo/genética , Reino Unido , Conjuntos de Datos como Asunto , Internet , Reproducibilidad de los Resultados , Estudios de Cohortes , Proteoma/análisis , Proteoma/metabolismo , Metaboloma , Plasma/metabolismo , Bases de Datos Factuales
2.
Nat Commun ; 13(1): 7356, 2022 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-36446790

RESUMEN

Understanding how genetic variants influence disease risk and complex traits (variant-to-function) is one of the major challenges in human genetics. Here we present a model-driven framework to leverage human genome-scale metabolic networks to define how genetic variants affect biochemical reaction fluxes across major human tissues, including skeletal muscle, adipose, liver, brain and heart. As proof of concept, we build personalised organ-specific metabolic flux models for 524,615 individuals of the INTERVAL and UK Biobank cohorts and perform a fluxome-wide association study (FWAS) to identify 4312 associations between personalised flux values and the concentration of metabolites in blood. Furthermore, we apply FWAS to identify 92 metabolic fluxes associated with the risk of developing coronary artery disease, many of which are linked to processes previously described to play in role in the disease. Our work demonstrates that genetically personalised metabolic models can elucidate the downstream effects of genetic variants on biochemical reactions involved in common human diseases.


Asunto(s)
Tejido Adiposo , Enfermedad de la Arteria Coronaria , Humanos , Encéfalo , Genoma Humano , Corazón
3.
Nat Commun ; 13(1): 6143, 2022 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-36253349

RESUMEN

Stroke is the second leading cause of death with substantial unmet therapeutic needs. To identify potential stroke therapeutic targets, we estimate the causal effects of 308 plasma proteins on stroke outcomes in a two-sample Mendelian randomization framework and assess mediation effects by stroke risk factors. We find associations between genetically predicted plasma levels of six proteins and stroke (P ≤ 1.62 × 10-4). The genetic associations with stroke colocalize (Posterior Probability >0.7) with the genetic associations of four proteins (TFPI, TMPRSS5, CD6, CD40). Mendelian randomization supports atrial fibrillation, body mass index, smoking, blood pressure, white matter hyperintensities and type 2 diabetes as stroke risk factors (P ≤ 0.0071). Body mass index, white matter hyperintensity and atrial fibrillation appear to mediate the TFPI, IL6RA, TMPRSS5 associations with stroke. Furthermore, thirty-six proteins are associated with one or more of these risk factors using Mendelian randomization. Our results highlight causal pathways and potential therapeutic targets for stroke.


Asunto(s)
Fibrilación Atrial , Diabetes Mellitus Tipo 2 , Accidente Cerebrovascular , Fibrilación Atrial/genética , Proteínas Sanguíneas/genética , Diabetes Mellitus Tipo 2/genética , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Humanos , Análisis de la Aleatorización Mendeliana , Polimorfismo de Nucleótido Simple , Proteoma/genética , Factores de Riesgo , Accidente Cerebrovascular/genética
4.
Liver Transpl ; 28(6): 1051-1062, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35029022

RESUMEN

Previous single-center, cross-sectional studies have reported a steep increase in the prevalence and severity of fibrosis through 10 to 15 years after pediatric liver transplantation. We report a multicenter study of paired surveillance biopsies in a contemporary cohort. Children who underwent liver transplant when younger than 6 years old and had paired surveillance liver biopsies were enrolled (n = 78, 35% girls, median 1.2 years old at transplant). A central pathologist graded inflammation, assessed rejection activity index, and staged fibrosis in the portal, sinusoidal, and perivenular compartments, allowing for calculation of the Liver Allograft Fibrosis Score (LAFSc). Analysis of variance tested associations between fibrosis progression and clinical parameters. The first biopsy, at a median 8.2 years (interquartile range, 5.9-11.6 years) after transplantation, showed absent to mild fibrosis (LAFSc 0-2) in 29%, moderate (LAFSc 3-5) in 56%, and severe (LAFSc 6-7) in 14% of patients. The second biopsy, at a median 4.7 years (IQR, 4.3-5.1 years) later, showed fibrosis progression (LAFSc increased by ≥3) in 10 (13%) and regression (LAFSc decreased by ≥3) in 4 (5%) patients. After adjusting for baseline LAFSc, younger age at transplant was the only risk factor for fibrosis progression. Although fibrosis prevalence and severity 6 to 12 years after transplant was similar to previous reports, fibrosis trajectory during the next 4 to 5 years was stable. Our data may be reassuring for children with consistently normal liver tests. A comprehensive understanding of factors determining allograft health during the very long term is essential to optimizing allograft and patient health.


Asunto(s)
Trasplante de Hígado , Biopsia , Niño , Estudios Transversales , Femenino , Fibrosis , Rechazo de Injerto/epidemiología , Rechazo de Injerto/etiología , Rechazo de Injerto/patología , Humanos , Lactante , Hígado/patología , Cirrosis Hepática/diagnóstico , Cirrosis Hepática/epidemiología , Cirrosis Hepática/etiología , Trasplante de Hígado/efectos adversos , Masculino
5.
Genome Med ; 13(1): 180, 2021 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-34753499

RESUMEN

BACKGROUND: Cardiorespiratory fitness (CRF) and physical activity (PA) are well-established predictors of morbidity and all-cause mortality. However, CRF is not routinely measured and PA not routinely prescribed as part of standard healthcare. The American Heart Association (AHA) recently presented a scientific case for the inclusion of CRF as a clinical vital sign based on epidemiological and clinical observation. Here, we leverage genetic data in the UK Biobank (UKB) to strengthen the case for CRF as a vital sign and make a case for the prescription of PA. METHODS: We derived two CRF measures from the heart rate data collected during a submaximal cycle ramp test: CRF-vo2max, an estimate of the participants' maximum volume of oxygen uptake, per kilogram of body weight, per minute; and CRF-slope, an estimate of the rate of increase of heart rate during exercise. Average PA over a 7-day period was derived from a wrist-worn activity tracker. After quality control, 70,783 participants had data on the two derived CRF measures, and 89,683 had PA data. We performed genome-wide association study (GWAS) analyses by sex, and post-GWAS techniques to understand genetic architecture of the traits and prioritise functional genes for follow-up. RESULTS: We found strong evidence that genetic variants associated with CRF and PA influenced genetic expression in a relatively small set of genes in the heart, artery, lung, skeletal muscle and adipose tissue. These functionally relevant genes were enriched among genes known to be associated with coronary artery disease (CAD), type 2 diabetes (T2D) and Alzheimer's disease (three of the top 10 causes of death in high-income countries) as well as Parkinson's disease, pulmonary fibrosis, and blood pressure, heart rate, and respiratory phenotypes. Genetic variation associated with lower CRF and PA was also correlated with several disease risk factors (including greater body mass index, body fat and multiple obesity phenotypes); a typical T2D profile (including higher insulin resistance, higher fasting glucose, impaired beta-cell function, hyperglycaemia, hypertriglyceridemia); increased risk for CAD and T2D; and a shorter lifespan. CONCLUSIONS: Genetics supports three decades of evidence for the inclusion of CRF as a clinical vital sign. Given the genetic, clinical and epidemiological evidence linking CRF and PA to increased morbidity and mortality, regular measurement of CRF as a marker of health and routine prescription of PA could be a prudent strategy to support public health.


Asunto(s)
Capacidad Cardiovascular/fisiología , Atención a la Salud , Ejercicio Físico/fisiología , Estudio de Asociación del Genoma Completo , Prescripciones , Signos Vitales/genética , Tejido Adiposo , Enfermedad de Alzheimer , Índice de Masa Corporal , Peso Corporal , Diabetes Mellitus Tipo 2 , Femenino , Humanos , Resistencia a la Insulina , Masculino , Obesidad , Fenotipo , Factores de Riesgo
6.
medRxiv ; 2021 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-33851187

RESUMEN

Severe COVID-19 is characterised by immunopathology and epithelial injury. Proteomic studies have identified circulating proteins that are biomarkers of severe COVID-19, but cannot distinguish correlation from causation. To address this, we performed Mendelian randomisation (MR) to identify proteins that mediate severe COVID-19. Using protein quantitative trait loci (pQTL) data from the SCALLOP consortium, involving meta-analysis of up to 26,494 individuals, and COVID-19 genome-wide association data from the Host Genetics Initiative, we performed MR for 157 COVID-19 severity protein biomarkers. We identified significant MR results for five proteins: FAS, TNFRSF10A, CCL2, EPHB4 and LGALS9. Further evaluation of these candidates using sensitivity analyses and colocalization testing provided strong evidence to implicate the apoptosis-associated cytokine receptor FAS as a causal mediator of severe COVID-19. This effect was specific to severe disease. Using RNA-seq data from 4,778 individuals, we demonstrate that the pQTL at the FAS locus results from genetically influenced alternate splicing causing skipping of exon 6. We show that the risk allele for very severe COVID-19 increases the proportion of transcripts lacking exon 6, and thereby increases soluble FAS. Soluble FAS acts as a decoy receptor for FAS-ligand, inhibiting apoptosis induced through membrane-bound FAS. In summary, we demonstrate a novel genetic mechanism that contributes to risk of severe of COVID-19, highlighting a pathway that may be a promising therapeutic target.

7.
Lancet Neurol ; 20(5): 351-361, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33773637

RESUMEN

BACKGROUND: The genetic basis of lacunar stroke is poorly understood, with a single locus on 16q24 identified to date. We sought to identify novel associations and provide mechanistic insights into the disease. METHODS: We did a pooled analysis of data from newly recruited patients with an MRI-confirmed diagnosis of lacunar stroke and existing genome-wide association studies (GWAS). Patients were recruited from hospitals in the UK as part of the UK DNA Lacunar Stroke studies 1 and 2 and from collaborators within the International Stroke Genetics Consortium. Cases and controls were stratified by ancestry and two meta-analyses were done: a European ancestry analysis, and a transethnic analysis that included all ancestry groups. We also did a multi-trait analysis of GWAS, in a joint analysis with a study of cerebral white matter hyperintensities (an aetiologically related radiological trait), to find additional genetic associations. We did a transcriptome-wide association study (TWAS) to detect genes for which expression is associated with lacunar stroke; identified significantly enriched pathways using multi-marker analysis of genomic annotation; and evaluated cardiovascular risk factors causally associated with the disease using mendelian randomisation. FINDINGS: Our meta-analysis comprised studies from Europe, the USA, and Australia, including 7338 cases and 254 798 controls, of which 2987 cases (matched with 29 540 controls) were confirmed using MRI. Five loci (ICA1L-WDR12-CARF-NBEAL1, ULK4, SPI1-SLC39A13-PSMC3-RAPSN, ZCCHC14, ZBTB14-EPB41L3) were found to be associated with lacunar stroke in the European or transethnic meta-analyses. A further seven loci (SLC25A44-PMF1-BGLAP, LOX-ZNF474-LOC100505841, FOXF2-FOXQ1, VTA1-GPR126, SH3PXD2A, HTRA1-ARMS2, COL4A2) were found to be associated in the multi-trait analysis with cerebral white matter hyperintensities (n=42 310). Two of the identified loci contain genes (COL4A2 and HTRA1) that are involved in monogenic lacunar stroke. The TWAS identified associations between the expression of six genes (SCL25A44, ULK4, CARF, FAM117B, ICA1L, NBEAL1) and lacunar stroke. Pathway analyses implicated disruption of the extracellular matrix, phosphatidylinositol 5 phosphate binding, and roundabout binding (false discovery rate <0·05). Mendelian randomisation analyses identified positive associations of elevated blood pressure, history of smoking, and type 2 diabetes with lacunar stroke. INTERPRETATION: Lacunar stroke has a substantial heritable component, with 12 loci now identified that could represent future treatment targets. These loci provide insights into lacunar stroke pathogenesis, highlighting disruption of the vascular extracellular matrix (COL4A2, LOX, SH3PXD2A, GPR126, HTRA1), pericyte differentiation (FOXF2, GPR126), TGF-ß signalling (HTRA1), and myelination (ULK4, GPR126) in disease risk. FUNDING: British Heart Foundation.


Asunto(s)
Predisposición Genética a la Enfermedad/epidemiología , Estudio de Asociación del Genoma Completo , Accidente Vascular Cerebral Lacunar/epidemiología , Accidente Vascular Cerebral Lacunar/genética , Australia , Europa (Continente) , Predisposición Genética a la Enfermedad/genética , Humanos , Imagen por Resonancia Magnética , Accidente Vascular Cerebral Lacunar/diagnóstico , Estados Unidos
8.
Nat Commun ; 11(1): 2175, 2020 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-32358547

RESUMEN

Cerebral small vessel disease is a major cause of stroke and dementia, but its genetic basis is incompletely understood. We perform a genetic study of three MRI markers of the disease in UK Biobank imaging data and other sources: white matter hyperintensities (N = 42,310), fractional anisotropy (N = 17,663) and mean diffusivity (N = 17,467). Our aim is to better understand the disease pathophysiology. Across the three traits, we identify 31 loci, of which 21 were previously unreported. We perform a transcriptome-wide association study to identify associations with gene expression in relevant tissues, identifying 66 associated genes across the three traits. This genetic study provides insights into the understanding of the biological mechanisms underlying small vessel disease.


Asunto(s)
Enfermedades de los Pequeños Vasos Cerebrales/diagnóstico por imagen , Enfermedades de los Pequeños Vasos Cerebrales/genética , Accidente Cerebrovascular/genética , Adulto , Anciano , Biomarcadores , Enfermedades de los Pequeños Vasos Cerebrales/complicaciones , Femenino , Regulación de la Expresión Génica/genética , Ontología de Genes , Sitios Genéticos , Estudio de Asociación del Genoma Completo , Humanos , Leucoencefalopatías/diagnóstico por imagen , Leucoencefalopatías/genética , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Especificidad de Órganos , Polimorfismo de Nucleótido Simple , Transcriptoma/genética
9.
PLoS One ; 13(12): e0207677, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30521541

RESUMEN

Population stratification is a well-known confounding factor in both common and rare variant association analyses. Rare variants tend to be more geographically clustered than common variants, because of their more recent origin. However, it is not yet clear if population stratification at a very fine scale (neighboring administrative regions within a country) would lead to statistical bias in rare variant analyses. As the inclusion of convenience controls from external studies is indeed a common procedure, in order to increase the power to detect genetic associations, this problem is important. We studied through simulation the impact of a fine scale population structure on different rare variant association strategies, assessing type I error and power. We showed that principal component analysis (PCA) based methods of adjustment for population stratification adequately corrected type I error inflation at the largest geographical scales, but not at finest scales. We also showed in our simulations that adding controls obviously increased power, but at a considerably lower level when controls were drawn from another population.


Asunto(s)
Estudios de Asociación Genética/estadística & datos numéricos , Variación Genética , Genética de Población/estadística & datos numéricos , Grupos de Población/estadística & datos numéricos , Sesgo , Simulación por Computador , Frecuencia de los Genes , Predisposición Genética a la Enfermedad , Migración Humana/estadística & datos numéricos , Humanos , Modelos Genéticos , Polimorfismo de Nucleótido Simple , Análisis de Componente Principal
10.
PLoS One ; 12(7): e0179364, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28742119

RESUMEN

Next-generation sequencing technologies made it possible to assay the effect of rare variants on complex diseases. As an extension of the "common disease-common variant" paradigm, rare variant studies are necessary to get a more complete insight into the genetic architecture of human traits. Association studies of these rare variations show new challenges in terms of statistical analysis. Due to their low frequency, rare variants must be tested by groups. This approach is then hindered by the fact that an unknown proportion of the variants could be neutral. The risk level of a rare variation may be determined by its impact but also by its position in the protein sequence. More generally, the molecular mechanisms underlying the disease architecture may involve specific protein domains or inter-genic regulatory regions. While a large variety of methods are optimizing functionality weights for each single marker, few evaluate variant position differences between cases and controls. Here, we propose a test called DoEstRare, which aims to simultaneously detect clusters of disease risk variants and global allele frequency differences in genomic regions. This test estimates, for cases and controls, variant position densities in the genetic region by a kernel method, weighted by a function of allele frequencies. We compared DoEstRare with previously published strategies through simulation studies as well as re-analysis of real datasets. Based on simulation under various scenarios, DoEstRare was the sole to consistently show highest performance, in terms of type I error and power both when variants were clustered or not. DoEstRare was also applied to Brugada syndrome and early-onset Alzheimer's disease data and provided complementary results to other existing tests. DoEstRare, by integrating variant position information, gives new opportunities to explain disease susceptibility. DoEstRare is implemented in a user-friendly R package.


Asunto(s)
Estudios de Asociación Genética/estadística & datos numéricos , Variación Genética , Enfermedad de Alzheimer/genética , Bioestadística , Síndrome de Brugada/genética , Estudios de Casos y Controles , Simulación por Computador , Frecuencia de los Genes , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Genómica , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Modelos Genéticos
11.
Hum Mol Genet ; 24(10): 2757-63, 2015 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-25650408

RESUMEN

The Brugada syndrome (BrS) is a rare heritable cardiac arrhythmia disorder associated with ventricular fibrillation and sudden cardiac death. Mutations in the SCN5A gene have been causally related to BrS in 20-30% of cases. Twenty other genes have been described as involved in BrS, but their overall contribution to disease prevalence is still unclear. This study aims to estimate the burden of rare coding variation in arrhythmia-susceptibility genes among a large group of patients with BrS. We have developed a custom kit to capture and sequence the coding regions of 45 previously reported arrhythmia-susceptibility genes and applied this kit to 167 index cases presenting with a Brugada pattern on the electrocardiogram as well as 167 individuals aged over 65-year old and showing no history of cardiac arrhythmia. By applying burden tests, a significant enrichment in rare coding variation (with a minor allele frequency below 0.1%) was observed only for SCN5A, with rare coding variants carried by 20.4% of cases with BrS versus 2.4% of control individuals (P = 1.4 × 10(-7)). No significant enrichment was observed for any other arrhythmia-susceptibility gene, including SCN10A and CACNA1C. These results indicate that, except for SCN5A, rare coding variation in previously reported arrhythmia-susceptibility genes do not contribute significantly to the occurrence of BrS in a population with European ancestry. Extreme caution should thus be taken when interpreting genetic variation in molecular diagnostic setting, since rare coding variants were observed in a similar extent among cases versus controls, for most previously reported BrS-susceptibility genes.


Asunto(s)
Síndrome de Brugada/genética , Predisposición Genética a la Enfermedad , Mutación , Canal de Sodio Activado por Voltaje NAV1.5/genética , Adulto , Arritmias Cardíacas/genética , Síndrome de Brugada/diagnóstico , Femenino , Frecuencia de los Genes , Genes , Estudios de Asociación Genética , Humanos , Masculino , Persona de Mediana Edad , Análisis de Secuencia de ADN , Población Blanca
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...