Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Front Public Health ; 12: 1447592, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39360250

RESUMEN

Rats are major reservoirs for pathogenic Leptospira, the bacteria causing leptospirosis, particularly in urban informal settlements. However, the impact of variation in rat abundance and pathogen shedding rates on spillover transmission to humans remains unclear. This study aimed to investigate how spatial variation in reservoir abundance and pathogen pressure affect Leptospira spillover transmission to humans in a Brazilian urban informal settlement. A longitudinal eco-epidemiological study was conducted from 2013 to 2014 to characterize the spatial distribution of rat abundance and Leptospira shedding rates in rats and determine the association with human infection risk in a cohort of 2,206 community residents. Tracking plates and live-trapping were used to measure rat abundance and quantify rat shedding status and load. In parallel, four sequential biannual serosurveys were used to identify human Leptospira infections. To evaluate the role of shedding on human risk, we built three statistical models for: (1) the relative abundance of rats, (2) the shedding rate by individual rats, and (3) human Leptospira infection, in which "total shedding", obtained by multiplying the predictions from those two models, was used as a risk factor. We found that Leptospira shedding was associated with older and sexually mature rats and varied spatially and temporally-higher at valley bottoms and with seasonal rainfall (December to March). The point estimate for "total shedding" by rat populations was positive, i.e., Leptospira infection risk increased with total shedding, but the association was not significant [odds ratio (OR) = 1.1; 95% confidence interval (CI): 0.9, 1.4]. This positive trend was mainly driven by rat abundance, rather than individual rat shedding (OR = 1.8; 95% CI: 0.6, 5.4 vs. OR = 1.0; 95% CI: 0.7, 1.4]. Infection risk was higher in areas with more vegetative land cover (OR = 2.4; 95% CI: 1.2, 4.8), and when floodwater entered the house (OR = 2.4; 95% CI: 1.6, 3.4). Our findings indicate that environmental and hydrological factors play a more significant role in Leptospira spillover than rat associated factors. Furthermore, we developed a novel approach combining several models to elucidate complex links between animal reservoir abundance, pathogen shedding and environmental factors on zoonotic spillover in humans that can be extended to other environmentally transmitted diseases.


Asunto(s)
Reservorios de Enfermedades , Leptospira , Leptospirosis , Zoonosis , Animales , Humanos , Leptospirosis/epidemiología , Leptospirosis/microbiología , Leptospirosis/transmisión , Leptospira/aislamiento & purificación , Reservorios de Enfermedades/microbiología , Brasil/epidemiología , Ratas , Zoonosis/microbiología , Masculino , Femenino , Adulto , Derrame de Bacterias , Estudios Longitudinales , Persona de Mediana Edad , Factores de Riesgo , Población Urbana/estadística & datos numéricos , Adolescente , Adulto Joven
2.
Parasitology ; 145(6): 797-806, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29113595

RESUMEN

Urban slums provide suitable conditions for infestation by rats, which harbour and shed a wide diversity of zoonotic pathogens including helminths. We aimed to identify risk factors associated with the probability and intensity of infection of helminths of the digestive tract in an urban slum population of Rattus norvegicus. Among 299 rats, eleven species/groups of helminths were identified, of which Strongyloides sp., Nippostrongylus brasiliensis and, the human pathogen, Angiostrongylus cantonensis were the most frequent (97, 41 and 39%, respectively). Sex interactions highlighted behavioural differences between males and females, as eg males were more likely to be infected with N. brasiliensis where rat signs were present, and males presented more intense infections of Strongyloides sp. Moreover, rats in poor body condition had higher intensities of N. brasiliensis. We describe a high global richness of parasites in R. norvegicus, including five species known to cause disease in humans. Among these, A. cantonensis was found in high prevalence and it was ubiquitous in the study area - knowledge which is of public health importance. A variety of environmental, demographic and body condition variables were associated with helminth species infection of rats, suggesting a comparable variety of risk factors for humans.


Asunto(s)
Helmintiasis Animal/epidemiología , Áreas de Pobreza , Ratas/parasitología , Enfermedades de los Roedores/epidemiología , Zoonosis/epidemiología , Angiostrongylus cantonensis/aislamiento & purificación , Animales , Brasil/epidemiología , Femenino , Helmintiasis Animal/parasitología , Helmintiasis Animal/transmisión , Humanos , Masculino , Salud Pública , Factores de Riesgo , Enfermedades de los Roedores/parasitología , Enfermedades de los Roedores/transmisión , Remodelación Urbana , Zoonosis/parasitología , Zoonosis/transmisión
3.
Evol Appl ; 10(4): 323-337, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28352293

RESUMEN

The Norway rat (Rattus norvegicus) is a key pest species globally and responsible for seasonal outbreaks of the zoonotic bacterial disease leptospirosis in the tropics. The city of Salvador, Brazil, has seen recent and dramatic increases in human population residing in slums, where conditions foster high rat density and increasing leptospirosis infection rates. Intervention campaigns have been used to drastically reduce rat numbers. In planning these interventions, it is important to define the eradication units - the spatial scale at which rats constitute continuous populations and from where rats are likely recolonizing, post-intervention. To provide this information, we applied spatial genetic analyses to 706 rats collected across Salvador and genotyped at 16 microsatellite loci. We performed spatially explicit analyses and estimated migration levels to identify distinct genetic units and landscape features associated with genetic divergence at different spatial scales, ranging from valleys within a slum community to city-wide analyses. Clear genetic breaks exist between rats not only across Salvador but also between valleys of slums separated by <100 m-well within the dispersal capacity of rats. The genetic data indicate that valleys may be considered separate units and identified high-traffic roads as strong impediments to rat movement. Migration data suggest that most (71-90%) movement is contained within valleys, with no clear source population contributing to migrant rats. We use these data to recommend eradication units and discuss the importance of carrying out individual-based analyses at different spatial scales in urban landscapes.

4.
PLoS One ; 11(3): e0152511, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27015422

RESUMEN

The Norway or brown rat (Rattus norvegicus) is among the most ubiquitous of rodents. However, the lack of studies describing Norway rat populations from tropical areas have limited our understanding regarding their demography and seasonal dynamics. In this study, we describe seasonal pattern in the abundance, reproductive parameters, and morphometrics of Norway rat populations in Salvador, Brazil. Rodents were trapped over four seasonal trapping periods (2013-2014) from three valleys. A total of 802 Norway rats were trapped over the course of the study over 7653 trap-nights. Norway rat abundance was high, but there was no significant differences between seasons. The reproductive parameters (e.g. frequency of pregnant and lactating females) did not show statistical differences between seasons. Female rats collected in the rainy season were heavier and older than females from the dry season. Salvador rats had a high incidence of pregnancy and birth rate (estimated birth rate of 79 young per year) compared to previous studies. The information generated is critical for the understanding of the ecology of Norway rat, the main reservoir of Leptospira in Salvador. However, future studies examining the effect of rodent control programs aimed at reducing populations, and determining rates of recovery, will further clarify our understanding of population dynamics.


Asunto(s)
Ecología/métodos , Ratas , Animales , Tasa de Natalidad , Brasil , Ciudades , Femenino , Masculino , Densidad de Población , Dinámica Poblacional , Áreas de Pobreza , Embarazo , Preñez , Estaciones del Año
5.
J Hered ; 107(2): 181-6, 2016 03.
Artículo en Inglés | MEDLINE | ID: mdl-26733693

RESUMEN

The Norway rat, Rattus norvegicus, is one of the most important pest species globally and the main reservoir of leptospires causing human leptospirosis in the urban slums of tropical regions. Rodent control is a frequent strategy in those settings to prevent the disease but rapid growth from residual populations and immigration limit the long-term effectiveness of interventions. To characterize the breeding ecology of R. norvegicus and provide needed information for the level of genetic mixing, which can help identify inter-connected eradication units, we estimated the occurrence of multiple paternity, distances between mothers and sires, and inbreeding in rats from urban slum habitat in Salvador, Brazil. We genotyped 9 pregnant females, their 66 offspring, and 371 males at 16 microsatellite loci. Multiple paternity was observed in 22% (2/9) of the study litters. Of the 12 sires that contributed to the 9 litters, we identified 5 (42%) of those sires among our genotyped males. Related males were captured in close proximity to pregnant females (the mean inter-parent trapping distance per litter was 70 m, ±58 m SD). Levels of relatedness between mother-sire pairs were higher than expected and significantly higher than relatedness between all females and non-sire males. Our findings indicate multiple paternity is common, inbreeding is apparent, and that mother-sire dyads occur in close proximity within the study area. This information is relevant to improve the spatial definition of the eradication units that may enhance the effectiveness of rodent management programs aimed at preventing human leptospirosis. High levels of inbreeding may also be a sign that eradication efforts are successful.


Asunto(s)
Genética de Población , Endogamia , Ratas/genética , Conducta Sexual Animal , Animales , Brasil , Ciudades , Femenino , Genotipo , Funciones de Verosimilitud , Masculino , Repeticiones de Microsatélite , Áreas de Pobreza , Embarazo , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA