Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 118
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 2507, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38509113

RESUMEN

Optical communication can be revolutionized by encoding data into the orbital angular momentum of light beams. However, state-of-the-art approaches for dynamic control of complex optical wavefronts are mainly based on liquid crystal spatial light modulators or miniaturized mirrors, which suffer from intrinsically slow (µs-ms) response times. Here, we experimentally realize a hybrid meta-optical system that enables complex control of the wavefront of light with pulse-duration limited dynamics. Specifically, by combining ultrafast polarization switching in a WSe2 monolayer with a dielectric metasurface, we demonstrate second harmonic beam deflection and structuring of orbital angular momentum on the femtosecond timescale. Our results pave the way to robust encoding of information for free space optical links, while reaching response times compatible with real-world telecom applications.

2.
Opt Express ; 32(3): 3480-3491, 2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-38297568

RESUMEN

Structured illumination is essential for high-performance ptychography. Especially in the extreme ultraviolet (EUV) range, where reflective optics are prevalent, the generation of structured beams is challenging and, so far, mostly amplitude-only masks have been used. In this study, we generate a highly structured beam using a phase-shifting diffuser optimized for 13.5 nm wavelength and apply this beam to EUV ptychography. This tailored illumination significantly enhances the quality and resolution of the ptychography reconstructions. In particular, when utilizing the full dynamics range of the detector, the resolution has been improved from 125 nm, when using an unstructured beam, to 34 nm. Further, ptychography enables the quantitative measurement of both the amplitude and phase of the EUV diffuser at 13.5 nm wavelength. This capability allows us to evaluate the influence of imperfections and contaminations on its "at wavelength" performance, paving the way for advanced EUV metrology applications and highlighting its importance for future developments in nanolithography and related fields.

3.
Sci Rep ; 14(1): 977, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38200053

RESUMEN

We experimentally demonstrate frequency non-degenerate photon-pair generation via spontaneous four-wave mixing from a novel CS2-filled microstructured optical fiber. CS2 has high nonlinearity, narrow Raman lines, a broad transmission spectrum, and also has a large index contrast with the microstructured silica fiber. We can achieve phase matching over a large spectral range by tuning the pump wavelength, allowing the generation of idler photons in the infrared region, which is suitable for applications in quantum spectroscopy. Moreover, we demonstrate a coincidence-to-accidental ratio of larger than 90 and a pair generation efficiency of about [Formula: see text] per pump pulse, which shows the viability of this fiber-based platform as a photon-pair source for quantum technology applications.

4.
ACS Nano ; 18(6): 5079-5088, 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38290218

RESUMEN

For the realization of truly reconfigurable metasurface technologies, dynamic spatial tuning of the metasurface resonance is required. Here we report the use of organic photoswitches as a means for the light-induced spatial tuning of metasurface resonances. Coating of a dielectric metasurface, hosting high-quality-factor resonances, with a spiropyran (SPA)-containing polymer enabled dynamic resonance tuning up to 4 times the resonance full-width at half-maximum with arbitrary spatial precision. A major benefit of employing photoswitches is the broad toolbox of chromophores available and the unique optical properties of each. In particular, SPA and azobenzene (AZO) photoswitches can both be switched with UV light but exhibit opposite refractive index changes. When applied to the metasurface, SPA induced a red shift in the metasurface resonance with a figure of merit of 97 RIU-1, while AZO caused a blue shift in the resonance with an even greater sensitivity of 100 RIU-1. Critically, SPA and AZO can be individually recovered with red and blue light, respectively. To exploit this advantage, we coated a dielectric metasurface with spatially offset SPA- and AZO-containing polymers to demonstrate wavelength-dependent, spatially resolved control over the metasurface resonance tuning.

5.
ACS Nano ; 18(1): 506-514, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38109362

RESUMEN

Manipulation of magnetic dipole emission with resonant photonic nanostructures is of great interest for both fundamental research and applications. However, obtaining selective control over the emission properties of magnetic dipole transitions is challenging, as they usually occur within a manifold of spectrally close emission lines associated with different spin states of the involved electronic levels. Here we demonstrate spectrally selective directional tailoring of magnetic dipole emission using designed photonic nanostructures featuring a high quality factor. Specifically, we employ a hybrid nanoscale optical system consisting of a Eu3+ compound coupled to a designed broken-symmetry TiO2 metasurface to demonstrate directional color routing of the compound's emission through its distinct electric and magnetic-dominated electronic transition channels. Using low numerical aperture collection optics, we achieve a fluorescence signal enhancement of up to 33.13 for the magnetic-dominated dipole transition at 590 nm when it spectrally overlaps with a spectrally narrow resonance of the metasurface. This makes the, usually weak, magnetic dipole transition the most intense spectral line in our recorded fluorescence spectra. By studying the directional emission properties for the coupled system using Fourier imaging and time-resolved fluorescence measurements, we demonstrate that the high-quality-factor modes in the metasurface enable free-space light routing, where forward-directed emission is established for the magnetic-dominated dipole transition, whereas the light emitted via the electric dipole transition is mainly directed sideways. Our results underpin the importance of magnetic light-matter interactions as an additional degree of freedom in photonic and optoelectronic systems. Moreover, they facilitate the development of spectrometer-free and highly integrated nanophotonic imaging, sensing, and probing devices.

6.
Nano Lett ; 23(23): 10848-10855, 2023 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-37967849

RESUMEN

In nanophotonics and quantum optics, we aim to control and manipulate light with tailored nanoscale structures. Hybrid systems of nanostructures and atomically thin materials are of interest here, as they offer rich physics and versatility due to the interaction between photons, plasmons, phonons, and excitons. In this study, we explore the optical and electronic properties of a hybrid system, a naturally n-doped monolayer WS2 covering a gold disk. We demonstrate that the nonresonant excitation of the gold disk in the high absorption regime efficiently generates hot carriers via localized surface plasmon excitation, which n-dope the monolayer WS2 and enhance the photoluminescence emission by regulating the multiexciton population and stabilizing the neutral exciton emission. The results are relevant to the further development of nanotransistors in photonic circuits and optoelectronic applications.

7.
Nanomaterials (Basel) ; 13(11)2023 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-37299713

RESUMEN

The capability of tailoring the resonance wavelength of metasurfaces is important as it can alleviate the manufacturing precision required to produce the exact structure according to the design of the nanoresonators. Tuning of Fano resonances by applying heat has been theoretically predicted in the case of silicon metasurfaces. Here, we experimentally demonstrate the permanent tailoring of quasi-bound states in the continuum (quasi-BIC) resonance wavelength in an a-Si:H metasurface and quantitatively analyze the modification in the Q-factor with gradual heating. A gradual increment in temperature leads to a spectral shift in the resonance wavelength. With the support of ellipsometry measurements, the spectral shift resulting from the short-duration (ten minutes) heating is identified to be due to refractive index variations in the material rather than a geometric effect or amorphous/polycrystalline phase transition. In the case of quasi-BIC modes in the near-infrared, resonance wavelength could be adjusted from T = 350 °C to T = 550 °C without affecting the Q-factor considerably. Apart from the temperature-induced resonance trimming, large Q-factors can be attained at the highest analyzed temperature (T = 700 °C) in the near-infrared quasi-BIC modes. Resonance tailoring is just one of the possible applications of our results. We expect that our study is also insightful in the design of a-Si:H metasurfaces where large Q-factors are required at high temperatures.

8.
Appl Opt ; 62(12): 3093-3099, 2023 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-37133155

RESUMEN

Quantum ghost imaging (QGI) is an intriguing imaging protocol that exploits photon-pair correlations stemming from spontaneous parametric down-conversion (SPDC). QGI retrieves images from two-path joint measurements, where single-path detection does not allow us to reconstruct the target image. Here we report on a QGI implementation exploiting a two-dimensional (2D) single-photon avalanche diode (SPAD) array detector for the spatially resolving path. Moreover, the employment of non-degenerate SPDC allows us to investigate samples at infrared wavelengths without the need for short-wave infrared (SWIR) cameras, while the spatial detection can be still performed in the visible region, where the more advanced silicon-based technology can be exploited. Our findings advance QGI schemes towards practical applications.

9.
Opt Express ; 31(2): 3364-3378, 2023 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-36785331

RESUMEN

Semiconductor nanowire lasers can be subject to modifications of their lasing threshold resulting from a variation of their environment. A promising choice is to use metallic substrates to gain access to low-volume Surface-Plasmon-Polariton (SPP) modes. We introduce a simple, yet quantitatively precise model that can serve to describe mode competition in nanowire lasers on metallic substrates. We show that an aluminum substrate can decrease the lasing threshold for ZnO nanowire lasers while for a silver substrate, the threshold increases compared with a dielectric substrate. Generalizing from these findings, we make predictions describing the interaction between planar metals and semiconductor nanowires, which allow to guide future improvements of highly-integrated laser sources.

10.
ACS Nano ; 2022 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-36414479

RESUMEN

Optical fibers equipped with plasmonic flow sensors at their tips are fabricated and investigated as photothermomechanical nanopumps for the active transport of target analytes to the sensor surface. The nanopumps are prepared using a bottom-up strategy: i.e., by sequentially stacking a monolayer of a thermoresponsive polymer and a plasmonic nanohole array on an optical fiber tip. The temperature-dependent collapse and swelling of the polymer is used to create a flow-through pumping mechanism. The heat required for pumping is generated by exploiting the photothermal effect in the plasmonic nanohole array upon irradiation with laser light (405 nm). Simultaneous detection of analytes by the plasmonic sensor is achieved by monitoring changes in its optical response at longer wavelengths (∼500-800 nm). Active mass transport by pumping through the holes of the plasmonic nanohole array is visualized by particle imaging velocimetry. Finally, the performance of the photothermomechanical nanopumps is investigated for two types of analytes, namely nanoscale objects (gold nanoparticles) and molecules (11-mercaptoundecanoic acid). In the presence of the pumping mechanism, a 4-fold increase in sensitivity was observed compared to the purely photothermal effect, demonstrating the potential of the presented photothermomechanical nanopumps for sensing applications.

11.
Opt Express ; 30(16): 29680-29693, 2022 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-36299137

RESUMEN

We theoretically study the generation of photon pairs via spontaneous four-wave mixing (SFWM) in a liquid-filled microstructured suspended-core optical fiber. We show that it is possible to control the wavelength, group velocity, and bandwidths of the two-photon states. Our proposed fiber structure shows a large number of degrees of freedom to engineer the two-photon state. Here, we focus on the factorable state, which shows no spectral correlation in the two-photon components of the state, and allows the heralding of a single-photon pure state without the need for spectral post-filtering.

12.
Nanoscale ; 14(34): 12395-12402, 2022 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-35971983

RESUMEN

The control of plasmon-nanoemitter interactions at the nanoscale enables the tailored modulation of optical properties, namely, the photoluminescence (PL) intensity of the nanoemitters. In this contribution, using a nanometer-thick poly[(2-diethylamino) ethyl methacrylate] (39 to 74 nm) as pH responsive spacer layer (pKa ∼ 6 to 6.5) between a plasmonic gold film and CdSe/ZnS Quantum Dots (QDs) nanoemitters, we could achieve reversible pH-responsive PL switching in QDs. In fact, the swelling (at pH 5) and shrinking (at pH 11) function of the pH-responsive spacer layer modulates the distance between the QDs and the gold surface, which dictates the plasmonic film-QDs nanoemitter interaction. Notably, we observed a high QDs' PL enhancement of up to a factor of 3.1 ± 0.4 through changing the pH value from 5 to 11. Furthermore, based on a systematic analysis of several samples with different spacer layer thicknesses and multiple pH cycles, our developed system revealed substantial stability, reversibility and PL enhancement reproducibility. Thus, the established acid-base responsive switchable systems may represent an appealing platform for applications such as sensors, biochemical assays, optoelectronics and logic gates and can be easily evolved to other multifunctional switchable systems using alternative stimuli-responsive polymers.

13.
Phys Rev Lett ; 128(17): 173601, 2022 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-35570459

RESUMEN

We propose a nonlinear imaging scheme with undetected photons that overcomes the diffraction limit by transferring near-field information at one wavelength to far-field information of a correlated photon with a different wavelength generated through spontaneous photon-pair generation. At the same time, this scheme allows for retrieval of high-contrast images with zero background, making it a highly sensitive scheme for imaging of small objects at challenging spectral ranges with subdiffraction resolutions.

14.
Light Sci Appl ; 11(1): 117, 2022 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-35487910

RESUMEN

Microscopy with extreme ultraviolet (EUV) radiation holds promise for high-resolution imaging with excellent material contrast, due to the short wavelength and numerous element-specific absorption edges available in this spectral range. At the same time, EUV radiation has significantly larger penetration depths than electrons. It thus enables a nano-scale view into complex three-dimensional structures that are important for material science, semiconductor metrology, and next-generation nano-devices. Here, we present high-resolution and material-specific microscopy at 13.5 nm wavelength. We combine a highly stable, high photon-flux, table-top EUV source with an interferometrically stabilized ptychography setup. By utilizing structured EUV illumination, we overcome the limitations of conventional EUV focusing optics and demonstrate high-resolution microscopy at a half-pitch lateral resolution of 16 nm. Moreover, we propose mixed-state orthogonal probe relaxation ptychography, enabling robust phase-contrast imaging over wide fields of view and long acquisition times. In this way, the complex transmission of an integrated circuit is precisely reconstructed, allowing for the classification of the material composition of mesoscopic semiconductor systems.

15.
Opt Express ; 30(1): 484-495, 2022 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-35201224

RESUMEN

We investigate numerically the evolution of a particular type of non-diffracting pulsed plasmonic beam called Airy plasmon pulses. A suitable diffraction grating is obtained by optimizing a grating (e.g., [Phys. Rev. Lett.107, 116802 (2011)10.1103/PhysRevLett.107.116802]) for maximum generation bandwidth and efficiency to excite ultrashort Airy plasmon pulses. The optimization process is based on Airy and non-Airy plasmons contributions from the diffraction grating. The time-averaged Airy plasmon pulse generated from the grating shows a bent trajectory and quasi non-diffracting properties similar to CW excited Airy plasmons. A design-parameter-dependent geometrical model is developed to explain the spatio-temporal dynamics of the Airy plasmon pulses, which predicts the pulse broadening in Airy plasmon pulses due to non-Airy plasmons emerging from the grating. This model provides a parametric design control for the potential engineering of temporally focused 2D non-diffracting pulsed plasmonic beams.

16.
Adv Mater ; 34(5): e2105868, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34652041

RESUMEN

Conventional optical diffusers, such as thick volume scatterers (Rayleigh scattering) or microstructured surface scatterers (geometric scattering), lack the potential for on-chip integration and are thus incompatible with next-generation photonic devices. Dielectric Huygens' metasurfaces, on the other hand, consist of 2D arrangements of resonant dielectric nanoparticles and therefore constitute a promising material platform for ultrathin and highly efficient photonic devices. When the nanoparticles are arranged in a random but statistically specific fashion, diffusers with exceptional properties are expected to come within reach. This work explores how dielectric Huygens' metasurfaces can implement wavelength-selective diffusers with negligible absorption losses and nearly Lambertian scattering profiles that are largely independent of the angle and polarization of incident waves. The combination of tailored positional disorder with a carefully balanced electric and magnetic response of the nanoparticles is shown to be an integral requirement for the operation as a diffuser. The proposed metasurfaces' directional scattering performance is characterized both experimentally and numerically, and their usability in wavefront-shaping applications is highlighted. Since the metasurfaces operate on the principles of Mie scattering and are embedded in a glassy environment, they may easily be incorporated in integrated photonic devices, fiber optics, or mechanically robust augmented reality displays.

17.
Opt Express ; 29(23): 37161-37174, 2021 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-34808794

RESUMEN

In this study, we explore analytically and experimentally long- and short-range surface plasmon polariton (LR-SPP and SR-SPP, respectively) modes in gold wedges. Especially, we aim to observe the 2-dimensional confinement of the electromagnetic field in gold wedges as it could enhance the light-matter interaction by offering a local density of states which depends on the propagation constant, consequently on the wedge height. The LR-SPP mode can propagate over a long distance, but the real part of the propagation constant remains relatively insensitive to the decreasing wedge height. This mode also experiences cut-off at a wedge height of about 50 nm in our experimental condition. Meanwhile, the SR-SPP mode has a large propagation constant that increases further with decreasing wedge height. As a result, the effective wavelength of the mode shrinks confining the electromagnetic wave longitudinally along the propagation direction in addition to enhancing the transverse confinement of SR-SPP. In the experiment, we use gold wedges with different edge heights to excite each SPP mode individually and image the electromagnetic near field by using a pseudo-heterodyne scattering scanning near-field optical microscope. By imaging the LR-SPP mode field, we demonstrate that the theoretical and measured values of the effective wavelength agree quite well. By using short wedges, we measure the SR-SPP mode field and demonstrate that the effective wavelength decreases to 47% in about half a micrometer of propagation distance. This corresponds to a 3.5 times decrease of the vacuum wavelength or an effective index of 3.5. It is important to note that this value is, by no means, the limit of the electromagnetic field's longitudinal confinement in a gold wedge. Rather, we were only able to measure the electromagnetic field up to this point due to our measurement limitations. The electromagnetic field will be propagating further, and the longitudinal confinement will increase as well. In conclusion, we measured the SR-SPP in a gold wedge and demonstrate the electromagnetic field confinement in the visible spectrum in gold wedges.

18.
Opt Express ; 29(17): 27362-27372, 2021 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-34615154

RESUMEN

We report the first demonstration of broadband adiabatic directional couplers in thin-film lithium niobate on insulator (LNOI) waveguides. A three LN-waveguide configuration with each waveguide having a ridge cross section of less than 1 square micron, built atop a layer of SiO2 based on a 500-µm-thick Si substrate, has been designed and constructed to optically emulate a three-state stimulated Raman adiabatic passage system, with which a unique counterintuitive adiabatic light transfer phenomenon in a high coupling efficiency of >97% (corresponding to a >15 dB splitting ratio) spanning telecom S, C, and L bands for both TE and TM polarization modes has been observed for a 2-mm long coupler length. An even broader operating bandwidth of >800 nm of the device can be found from the simulation fitting of the experimental data. The footprint of the realized LNOI adiabatic coupler has been reduced by >99% compared to its bulk counterparts. Such an ultra-compact, broadband LNOI adiabatic coupler can be further used to implement or integrate with various photonic elements, a potential building block for realizing large-scale integrated photonic (quantum) circuits in LN.

19.
Nano Lett ; 21(10): 4423-4429, 2021 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-33971095

RESUMEN

All-dielectric optical metasurfaces are a workhorse in nano-optics, because of both their ability to manipulate light in different degrees of freedom and their excellent performance at light frequency conversion. Here, we demonstrate first-time generation of photon pairs via spontaneous parametric-down conversion in lithium niobate quantum optical metasurfaces with electric and magnetic Mie-like resonances at various wavelengths. By engineering the quantum optical metasurface, we tailor the photon-pair spectrum in a controlled way. Within a narrow bandwidth around the resonance, the rate of pair production is enhanced up to 2 orders of magnitude, compared to an unpatterned film of the same thickness and material. These results enable flat-optics sources of entangled photons-a new promising platform for quantum optics experiments.

20.
Opt Express ; 29(4): 5567-5579, 2021 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-33726091

RESUMEN

Optical metasurfaces were suggested as a route for engineering advanced light sources with tailored emission properties. In particular, they provide a control over the emission directionality, which is essential for single-photon sources and LED applications. Here, we experimentally study light emission from a metasurface composed of III-V semiconductor Mie-resonant nanocylinders with integrated quantum dots (QDs). Specifically, we focus on the manipulation of the directionality of spontaneous emission from the QDs due to excitation of different magnetic quadrupole resonances in the nanocylinders. To this end, we perform both back focal plane imaging and momentum-resolved spectroscopy measurements of the emission. This allows for a comprehensive analysis of the effect of the different resonant nanocylinder modes on the emission characteristics of the metasurface. Our results show that the emission directionality can be manipulated by an interplay of the excited quadrupolar nanocylinder modes with the metasurface lattice modes and provide important insights for the design of novel smart light sources and new display concepts.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...