Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 2507, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38509113

RESUMEN

Optical communication can be revolutionized by encoding data into the orbital angular momentum of light beams. However, state-of-the-art approaches for dynamic control of complex optical wavefronts are mainly based on liquid crystal spatial light modulators or miniaturized mirrors, which suffer from intrinsically slow (µs-ms) response times. Here, we experimentally realize a hybrid meta-optical system that enables complex control of the wavefront of light with pulse-duration limited dynamics. Specifically, by combining ultrafast polarization switching in a WSe2 monolayer with a dielectric metasurface, we demonstrate second harmonic beam deflection and structuring of orbital angular momentum on the femtosecond timescale. Our results pave the way to robust encoding of information for free space optical links, while reaching response times compatible with real-world telecom applications.

2.
Opt Express ; 32(3): 3480-3491, 2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-38297568

RESUMEN

Structured illumination is essential for high-performance ptychography. Especially in the extreme ultraviolet (EUV) range, where reflective optics are prevalent, the generation of structured beams is challenging and, so far, mostly amplitude-only masks have been used. In this study, we generate a highly structured beam using a phase-shifting diffuser optimized for 13.5 nm wavelength and apply this beam to EUV ptychography. This tailored illumination significantly enhances the quality and resolution of the ptychography reconstructions. In particular, when utilizing the full dynamics range of the detector, the resolution has been improved from 125 nm, when using an unstructured beam, to 34 nm. Further, ptychography enables the quantitative measurement of both the amplitude and phase of the EUV diffuser at 13.5 nm wavelength. This capability allows us to evaluate the influence of imperfections and contaminations on its "at wavelength" performance, paving the way for advanced EUV metrology applications and highlighting its importance for future developments in nanolithography and related fields.

3.
ACS Nano ; 18(6): 5079-5088, 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38290218

RESUMEN

For the realization of truly reconfigurable metasurface technologies, dynamic spatial tuning of the metasurface resonance is required. Here we report the use of organic photoswitches as a means for the light-induced spatial tuning of metasurface resonances. Coating of a dielectric metasurface, hosting high-quality-factor resonances, with a spiropyran (SPA)-containing polymer enabled dynamic resonance tuning up to 4 times the resonance full-width at half-maximum with arbitrary spatial precision. A major benefit of employing photoswitches is the broad toolbox of chromophores available and the unique optical properties of each. In particular, SPA and azobenzene (AZO) photoswitches can both be switched with UV light but exhibit opposite refractive index changes. When applied to the metasurface, SPA induced a red shift in the metasurface resonance with a figure of merit of 97 RIU-1, while AZO caused a blue shift in the resonance with an even greater sensitivity of 100 RIU-1. Critically, SPA and AZO can be individually recovered with red and blue light, respectively. To exploit this advantage, we coated a dielectric metasurface with spatially offset SPA- and AZO-containing polymers to demonstrate wavelength-dependent, spatially resolved control over the metasurface resonance tuning.

4.
Sci Rep ; 14(1): 977, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38200053

RESUMEN

We experimentally demonstrate frequency non-degenerate photon-pair generation via spontaneous four-wave mixing from a novel CS2-filled microstructured optical fiber. CS2 has high nonlinearity, narrow Raman lines, a broad transmission spectrum, and also has a large index contrast with the microstructured silica fiber. We can achieve phase matching over a large spectral range by tuning the pump wavelength, allowing the generation of idler photons in the infrared region, which is suitable for applications in quantum spectroscopy. Moreover, we demonstrate a coincidence-to-accidental ratio of larger than 90 and a pair generation efficiency of about [Formula: see text] per pump pulse, which shows the viability of this fiber-based platform as a photon-pair source for quantum technology applications.

5.
ACS Nano ; 18(1): 506-514, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38109362

RESUMEN

Manipulation of magnetic dipole emission with resonant photonic nanostructures is of great interest for both fundamental research and applications. However, obtaining selective control over the emission properties of magnetic dipole transitions is challenging, as they usually occur within a manifold of spectrally close emission lines associated with different spin states of the involved electronic levels. Here we demonstrate spectrally selective directional tailoring of magnetic dipole emission using designed photonic nanostructures featuring a high quality factor. Specifically, we employ a hybrid nanoscale optical system consisting of a Eu3+ compound coupled to a designed broken-symmetry TiO2 metasurface to demonstrate directional color routing of the compound's emission through its distinct electric and magnetic-dominated electronic transition channels. Using low numerical aperture collection optics, we achieve a fluorescence signal enhancement of up to 33.13 for the magnetic-dominated dipole transition at 590 nm when it spectrally overlaps with a spectrally narrow resonance of the metasurface. This makes the, usually weak, magnetic dipole transition the most intense spectral line in our recorded fluorescence spectra. By studying the directional emission properties for the coupled system using Fourier imaging and time-resolved fluorescence measurements, we demonstrate that the high-quality-factor modes in the metasurface enable free-space light routing, where forward-directed emission is established for the magnetic-dominated dipole transition, whereas the light emitted via the electric dipole transition is mainly directed sideways. Our results underpin the importance of magnetic light-matter interactions as an additional degree of freedom in photonic and optoelectronic systems. Moreover, they facilitate the development of spectrometer-free and highly integrated nanophotonic imaging, sensing, and probing devices.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA