Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Chemosphere ; 297: 133940, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35231472

RESUMEN

Herein, we investigate the interplay between a photocatalyst (TiO2) and a catalyst (Pt/TiO2 and Pt/CeO2) for the oxidation of formaldehyde and toluene at room temperature. A luminous textile is used as support and as light source for the photocatalyst. Our results indicate that the presence of the catalyst and the photocatalyst increases the catalytic performance for the oxidation of formaldehyde, while the photocatalytic performance for toluene oxidation decreases. The overall performance (toluene and formaldehyde degradation) of the system can be optimized with respect to the choice of support for the catalyst (e.g. TiO2 or CeO2), the quantity of Pt used, and the ratio between the catalyst and photocatalyst. In addition, different configurations of the photocatalyst and the catalyst on the textile are studied: under leaching and flow-through gas streams, catalyst and photocatalyst deposition on the same and opposite site of the textile are tested. The performance of the system can be optimized by adapting a configuration where the gas stream goes through the textile, while the deposition side of the catalyst and/or photocatalyst with respect to the gas stream is of minor importance.

2.
Photochem Photobiol Sci ; 8(7): 1040-6, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19582281

RESUMEN

Two commercial types of self-cleaning glass (SCG) have been tested to confirm the real photocatalytic nature of their properties. This was done by using four photocatalytic tests: (i) in the gas phase with the total oxidation of acetylene; (ii) in water with the total degradation of malic acid, (iii) in water with the total degradation of methylene blue, and (iv) in the solid phase with the total oxidative degradation of a layer of stearic acid deposited on the self-cleaning glass surface, in contact with the superficial titania coating. The influence of various factors (temperature, humidity, wavelength, radiant flux, presence of inorganic particles stuck at the glass surface) was explained in line with the fundamentals of photocatalysis. The results helped to understand the behaviour of self-cleaning glass.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA