Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 2634, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38528030

RESUMEN

Real-time lab analysis is needed to support clinical decision making and research on human missions to the Moon and Mars. Powerful laboratory instruments, such as flow cytometers, are generally too cumbersome for spaceflight. Here, we show that scant test samples can be measured in microgravity, by a trained astronaut, using a miniature cytometry-based analyzer, the rHEALTH ONE, modified specifically for spaceflight. The base device addresses critical spaceflight requirements including minimal resource utilization and alignment-free optics for surviving rocket launch. To fully enable reduced gravity operation onboard the space station, we incorporated bubble-free fluidics, electromagnetic shielding, and gravity-independent sample introduction. We show microvolume flow cytometry from 10 µL sample drops, with data from five simultaneous channels using 10 µs bin intervals during each sample run, yielding an average of 72 million raw data points in approximately 2 min. We demonstrate the device measures each test sample repeatably, including correct identification of a sample that degraded in transit to the International Space Station. This approach can be utilized to further our understanding of spaceflight biology and provide immediate, actionable diagnostic information for management of astronaut health without the need for Earth-dependent analysis.


Asunto(s)
Vuelo Espacial , Ingravidez , Humanos , Citometría de Flujo , Luna
2.
Life Sci Space Res (Amst) ; 31: 29-33, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34689947

RESUMEN

During long duration orbital space missions, astronauts experience immune system dysregulation, the persistent reactivation of latent herpesviruses, and some degree of clinical incidence. During planned NASA 'Artemis' deep space missions the stressors that cause this phenomenon will increase, while clinical care capability will likely be reduced. There is currently minimal clinical laboratory capability aboard the International Space Station (ISS). The ability to monitor the white blood cell count (WBC) and differential during spaceflight has been an unmet NASA medical requirement, primarily due to a lack of capable hardware. We performed ground and flight validation of a device designed to monitor WBC and differential within minutes from a fingerstick blood sample. This device is miniaturized, robust, and generally compatible with microgravity operations. Ground testing for spaceflight consisted of vibration tolerance, power/battery and interface requirements, electromagnetic interference (EMI), and basic evaluation of sample preparation and operations in the context of spaceflight constraints. The in-flight validation performed aboard the ISS by two astronauts included assessment of three levels of control solution (blood) samples as well as a real time analysis of a fingerstick blood sample by one of the crewmembers. Flight and ground testing of the same lot of control solutions yielded similar total WBC values. There was some select discrepancy between flight and ground data for the differential analysis. However, the data suggest that this issue is due to compromise of the control solutions as a result of storage length before flight operations, and not due to a microgravity-associated issue with instrument performance. This evaluation also yielded lessons learned regarding crewmember training for technique-sensitive small-volume biosample collection and handling in microgravity. The fingerstick analysis was successful and was the first real-time hematology assessment performed during spaceflight. This device may provide an in-mission monitoring capability for astronauts thereby assisting Flight Surgeons and the crew medical officer during both orbital and deep space missions.


Asunto(s)
Vuelo Espacial , Ingravidez , Astronautas , Humanos , Sistemas de Atención de Punto , Tecnología , Ingravidez/efectos adversos
3.
Aviat Space Environ Med ; 82(2): 128-32, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21329028

RESUMEN

INTRODUCTION: Human activity monitoring is a useful tool in medical monitoring, military applications, athletic coaching, and home healthcare. We propose the use of an accelerometer-based system to track crewmember activity during space missions in reduced gravity environments. It is unclear how the partial gravity environment of the Moorn or Mars will affect human locomotion. Here we test a novel analogue of lunar gravity in combination with a custom wireless activity tracking system. METHODS: A noninvasive wireless accelerometer-based sensor system, the activity tracking device (ATD), was developed. The system has two sensor units; one footwear-mounted and the other waist-mounted near the midlower back. Subjects (N=16) were recruited to test the system in the enhanced Zero Gravity Locomotion Simulator (eZLS) at NASA Glenn Research Center. Data were used to develop an artificial neural network for activity recognition. RESULTS: The eZLS demonstrated the ability to replicate reduced gravity environments. There was a 98% agreement between the ATD and force plate-derived stride times during running (9.7 km x h(-1)) at both 1 g and 1/6 g. A neural network was designed and successfully trained to identify lunar walking, running, hopping, and loping from ATD measurements with 100% accuracy. DISCUSSION: The eZLS is a suitable tool for examining locomotor activity at simulated lunar gravity. The accelerometer-based ATD system is capable of monitoring human activity and may be suitable for use during remote, long-duration space missions. A neural network has been developed to use data from the ATD to aid in remote activity monitoring.


Asunto(s)
Locomoción/fisiología , Monitoreo Fisiológico/instrumentación , Ingravidez , Adulto , Femenino , Humanos , Masculino , Miniaturización , Luna , Zapatos , Programas Informáticos
4.
Aviat Space Environ Med ; 81(12): 1092-9, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21197853

RESUMEN

INTRODUCTION: The effect of reducing gravity on locomotion has been studied using microgravity analogues. However, there is no known literature comparing locomotion in actual microgravity (AM) to locomotion in simulated microgravity (SM). METHODS: Five subjects were tested while walking at 1.34 m x s(-1) and running at 3.13 m x s(-1) on a treadmill during parabolic flight and on a microgravity simulator. The external load (EL) in AM and SM was provided by elastomer bungees at approximately 55% (low) and 90% (high) of the subjects' bodyweight (BW). Lower body joint kinematics and ground reaction forces were measured during each condition. Effect size and its 95% confidence interval were computed between gravitational conditions for each outcome variable. RESULTS: In AM, subjects attained approximately 15-21 degrees greater hip flexion during walking and 19-25 degrees greater hip flexion during running. Hip range of motion was greater in AM during running by approximately 12-17 degrees. Trunk motion was 4 degrees less in SM than AM during walking. Peak impact force was greater in SM than in AM during walking with a low EL (SM = 0.95 +/- 0.04 BW; AM = 0.76 +/- 0.04 BW) and contact times were greater in SM. CONCLUSIONS: Subtle differences exist in locomotion patterns, temporal kinematics, and peak impact ground reaction forces between AM and SM. The differences suggest possible adaptations in the motor coordination required between gravitational condition, and potential differences in adaptations that are dependent upon if training occurs in actual or simulated microgravity.


Asunto(s)
Carrera/fisiología , Caminata/fisiología , Simulación de Ingravidez , Ingravidez , Adulto , Articulación del Tobillo/fisiología , Fenómenos Biomecánicos , Femenino , Articulación de la Cadera/fisiología , Humanos , Articulación de la Rodilla/fisiología , Masculino , Rango del Movimiento Articular/fisiología
5.
Aviat Space Environ Med ; 76(5): 441-7, 2005 May.
Artículo en Inglés | MEDLINE | ID: mdl-15892541

RESUMEN

BACKGROUND: Exercise is a promising countermeasure to the physiological deconditioning experienced in microgravity, but has not proven effective in eliminating the ongoing loss of bone mineral, most likely due to the lack of high-impact forces and loading rates during in-flight activity. We wanted to determine lower-extremity response to high-impact jumping exercises in true and simulated microgravity and establish if 1-G force magnitudes can be achieved in a weightless environment. METHODS: Jumping experiments were performed in a ground-based zero-gravity simulator (ZGS) in 1 G, and during parabolic flight with a gravity-replacement system. There were 12 subjects who participated in the study, with 4 subjects common to both conditions. Force, loading rates, jump height, and kinematics were analyzed during jumps with three distinct landings: two-footed toe-heel, one-footed toe-heel, and flat-footed. Gravity replacement loads of 45%, 60%, 75%, and 100% bodyweight were used in the ZGS; because of time constraints, these loads were limited to 60% and 75% bodyweight in parabolic flight. RESULTS: Average peak ground-reaction forces during landing ranged between 1902+/-607 and 2631+/-663 N in the ZGS and between 1683+/-807 and 2683+/-1174 N in the KC-135. No significant differences were found between the simulated and true microgravity conditions, but neither condition achieved the magnitudes found in 1 G. CONCLUSION: Data support the hypothesis that jumping exercises can impart high-impact forces during weightlessness and that the custom-designed ZGS will replicate what is experienced in true microgravity.


Asunto(s)
Pierna/fisiología , Movimiento/fisiología , Ingravidez , Adulto , Femenino , Humanos , Rodilla/fisiología , Masculino , Músculo Esquelético/fisiología , Soporte de Peso/fisiología , Simulación de Ingravidez
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...