Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Adv Exp Med Biol ; 1451: 1-20, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38801568

RESUMEN

Monkeypox (Mpox) is a zoonotic disease caused by a virus (monkeypox virus-MPV) belonging to the Poxviridae family. In humans, the disease has an incubation period of 5-21 days and then progresses in two phases, the prodromal phase and the rash phase. The prodromal phase is characterized by non-specific symptoms such as fever, muscle pain, malaise, lymphadenopathy, headache, and chills. Skin lesions appear in the rash phase of the disease. These lesions progress through different stages (macules, papules, vesicles, and pustules). In May 2022, WHO reported an outbreak of human Mpox in several countries which were previously Mpox-free. As per the CDC report of March 01, 2023, a total of 86,231 confirmed cases of Mpox and 105 deaths have been reported from 110 countries and territories across the globe. Notably, more than 90% of these countries were reporting Mpox for the first time. The phylogenetic analysis revealed that this outbreak was associated with the virus from the West African clade. However, most of the cases in this outbreak had no evidence of travel histories to MPV-endemic countries in Central or West Africa. This outbreak was primarily driven by the transmission of the virus via intimate contact in men who have sex with men (MSM). The changing epidemiology of Mpox raised concerns about the increasing spread of the disease in non-endemic countries and the urgent need to control and prevent it. In this chapter, we present all the documented cases of Mpox from 1970 to 2023 and discuss the past, present, and future of MPV.


Asunto(s)
Brotes de Enfermedades , Monkeypox virus , Mpox , Animales , Humanos , Monkeypox virus/genética , Monkeypox virus/patogenicidad , Mpox/epidemiología , Mpox/transmisión , Mpox/virología , Filogenia , Zoonosis/epidemiología , Zoonosis/virología , Zoonosis/transmisión
2.
Vet World ; 17(1): 125-130, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38406362

RESUMEN

Background and Aim: Ostrich (Struthio camelus) farming in the United Arab Emirates (UAE) is a relatively new field of farming. Farmed ostriches are susceptible to ectoparasite infestation, which affects their production. This study was conducted to estimate the prevalence of ectoparasites on ostriches raised on a farm in Abu Dhabi Emirate. Materials and Methods: The feathers of 42 ostriches (26 females and 16 males) were collected and morphologically examined for ectoparasites. In total, 283 lice (89 males and 194 females) were collected from birds. However, there were no ticks or other ectoparasites. Lice were preserved in 1.5 mL tubes containing 70% ethanol and were later identified using taxonomic keys. The prevalence, mean intensity of infection, and mean abundance were estimated. Results: One louse species, Struthiolipeurus struthionis was identified. To the best of our knowledge, this is the first report of S. struthionis in ostriches raised in the UAE with an overall prevalence of 88%. The prevalence of lice was significantly higher in July (100%) than that in May (66.7%). Likewise, the mean intensity and abundance of lice were significantly higher in June (10.6 and 9.94, respectively) than in May (3.25 and 2.2, respectively). Conclusion: The high prevalence of lice poses a serious risk to ostrich farming by negatively affecting the health and productivity of ostriches.

3.
Rev Med Virol ; 34(1): e2489, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37930054

RESUMEN

In May 2022, World Health Organization (WHO) reported an outbreak of Mpox in several European countries which were previously Mpox free. Mpox (formerly known as monkeypox) is a zoonotic viral disease endemic in Central and West Africa. The sudden emergence of Mpox outside Africa and its subsequent rapid spread lead the WHO to declare the outbreak as Public Health Emergency of International Concern. By 15 May 2023, a total of 87,704 confirmed cases and 140 deaths had been reported from 111 countries and territories worldwide. Looking back on this outbreak 1 year later, several important questions have arisen. Here, we address these questions using the classic 5 Ws: What, When, Where, Who and Why? We discuss these questions to understand how this outbreak emerged and how it was effectively managed. We outline what needs to be done to prevent, or at least minimise, outbreaks due to emerging and re-emerging viral infections.


Asunto(s)
Mpox , Humanos , Animales , Mpox/epidemiología , Brotes de Enfermedades , Zoonosis , Salud Pública , África/epidemiología
4.
Pathogens ; 12(6)2023 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-37375497

RESUMEN

Rhipicephalus ticks are described as important ticks impacting the costs of livestock rearing and by-products sale. The prevalence and response of ticks towards cypermethrin sprays indicate the need to implement the rational use of acaricides. In our previous studies, ZnO nanoparticles were shown to inhibit the major life-cycle stages of Hyalomma ticks, indicative of promising application of nanomaterials against the hard ticks. The current study was designed to probe into one of alternative options to curtail Rhipicephalus ticks by employing cypermethrin-coated nanoparticles of ZnO (C-ZnO NPs) and ZnS (C-ZnS NPs). The nanocomposites showed a roughly spherical type of morphology and various size dimensions upon characterization using SEM and EDX. Female ovipositioning was declined up to only 48% in ZnS and up to 32% in ZnO NPs even after 28 days in vitro. Similarly, the larval hatching was also impacted, leading to a hatching percentage of 21% and 15% by application of C-ZnS NPs and C-ZnO NPs, respectively. The LC90 in female adult groups were 3.94 mg/L and 4.27 mg/L for the C-ZnO NPs and C-ZnS NPs groups, respectively. Similarly, the larval groups had LC90 of 8.63 and 8.95 mg/L for the C-ZnO NPs and C-ZnS NPs groups. The study is a proof of the concept for incorporating effective and safe nanocomposites as acaricides. The studies on the efficacy and spectrum of non-target effects of nanomaterial-based acaricides can further refine the research on finding novel alternatives for tick control.

5.
Vet World ; 16(3): 439-448, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37041826

RESUMEN

Background and Aim: Viruses are important components of the microbiome of ticks. Ticks are capable of transmitting several serious viral diseases to humans and animals. Hitherto, the composition of viral communities in Hyalomma dromedarii ticks associated with camels in the United Arab Emirates (UAE) remains unexplored. This study aimed to characterize the RNA virome diversity in male and female H. dromedarii ticks collected from camels in Al Ain, UAE. Materials and Methods: We collected ticks, extracted, and sequenced RNA, using Illumina (NovaSeq 6000) and Oxford Nanopore (MinION). Results: From the total generated sequencing reads, 180,559 (~0.35%) and 197,801 (~0.34%) reads were identified as virus-related reads in male and female tick samples, respectively. Taxonomic assignment of the viral sequencing reads was accomplished based on bioinformatic analyses. Further, viral reads were classified into 39 viral families. Poxiviridae, Phycodnaviridae, Phenuiviridae, Mimiviridae, and Polydnaviridae were the most abundant families in the tick viromes. Notably, we assembled the genomes of three RNA viruses, which were placed by phylogenetic analyses in clades that included the Bole tick virus. Conclusion: Overall, this study attempts to elucidate the RNA virome of ticks associated with camels in the UAE and the results obtained from this study improve the knowledge of the diversity of viruses in H. dromedarii ticks.

6.
Front Immunol ; 14: 1061899, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36817439

RESUMEN

Haematophagous arthropods can harbor various pathogens including viruses, bacteria, protozoa, and nematodes. Insects possess an innate immune system comprising of both cellular and humoral components to fight against various infections. Haemocytes, the cellular components of haemolymph, are central to the insect immune system as their primary functions include phagocytosis, encapsulation, coagulation, detoxification, and storage and distribution of nutritive materials. Plasmatocytes and granulocytes are also involved in cellular defense responses. Blood-feeding arthropods, such as mosquitoes and ticks, can harbour a variety of viral pathogens that can cause infectious diseases in both human and animal hosts. Therefore, it is imperative to study the virus-vector-host relationships since arthropod vectors are important constituents of the ecosystem. Regardless of the complex immune response of these arthropod vectors, the viruses usually manage to survive and are transmitted to the eventual host. A multidisciplinary approach utilizing novel and strategic interventions is required to control ectoparasite infestations and block vector-borne transmission of viral pathogens to humans and animals. In this review, we discuss the arthropod immune response to viral infections with a primary focus on the innate immune responses of ticks and mosquitoes. We aim to summarize critically the vector immune system and their infection transmission strategies to mammalian hosts to foster debate that could help in developing new therapeutic strategies to protect human and animal hosts against arthropod-borne viral infections.


Asunto(s)
Artrópodos , Culicidae , Garrapatas , Virosis , Animales , Humanos , Ecosistema , Mosquitos Vectores , Vectores Artrópodos , Artrópodos/fisiología , Interacciones Huésped-Patógeno , Mamíferos
7.
Front Vet Sci ; 9: 938601, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36176697

RESUMEN

Crimean-Congo hemorrhagic fever (CCHF) is an important tick-borne viral infection with a fatality rate of up to 50% during outbreaks. Crimean-Congo hemorrhagic fever virus (CCHFV) is sustained in the ecosystem in benign form through vertical and horizontal transmission cycles involving tick vectors, wildlife, and livestock. Hyalomma ticks are considered the major source of human infection. CCHF occurs most often among butchers, slaughterhouse workers, and farmworkers through infected tick bites or/and contact with blood and tissues of infected livestock. The nosocomial transmission can occur in auxiliary nurses and physicians through contact with the infected patients. The widespread distribution of CCHFV most probably occurred by ticks on migratory birds, or through international travel and trade of livestock and wildlife. During co-infections of ticks and vertebrates, reassortment among genome segments could play a significant role in generating diversity, and hence, a potential risk for the emergence of novel variants. In this systematic review, we aimed to determine the epidemiology, transmission, distribution, mortality, and clinical features of CCHF in 22 Arab countries, comprising the Arab world. Based on the analysis of 57 studies published from 1978 to 2021, we found 20 tick species that could be associated with CCHFV transmission. During the 43-year period, 321 cases of CCHF were reported from 9/22 Arab countries, Iraq, Kuwait, UAE, Saudi Arabia, Oman, Sudan, Egypt, Tunisia, and Mauritania. The mean case fatality rate was 29% during various outbreaks. Individuals working in abattoirs/slaughter houses, livestock farms, and healthcare were most at risk. Contact with blood or body secretions from infected animals and patients was the most common mode of transmission. A number of different animals, including cattle, goats, sheep, and camels were reported to be seropositive for CCHFV. The highest seroprevalence was observed in camels (29%), followed by cattle (21%), goats (15%), and sheep (14%). We discuss these results in the context of policy-making and potential preventative measures that can be implemented to reduce the burden of CCHF in the Arab world.

8.
Front Vet Sci ; 9: 861233, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35433895

RESUMEN

Ticks (Acari) are ectoparasites of animals that harbor communities of microbes of importance to animal and human health. Microbial communities associated with ticks exhibit temporal patterns of variation in their composition, with different genera dominating at different times of the year. In this study, molecular tools were used to assess the composition of the microbial communities associated with Hyalomma dromdarii. Adult ticks were collected every month for 1 year from 25 camels in the UAE. A total of 12 DNA pools were prepared (one pool for each month). We monitored the microbiota of ticks using high-throughput sequencing of the V3-V4 region of the bacterial 16S rRNA gene. A total of 614 operational taxonomic units were produced through de novo clustering and belonged to 17 phyla, 30 classes, 46 orders, 118 families, and 222 genera. Fifteen bacterial families were found to be the most abundant. The dominant bacterial communities associated with H. dromedarii belonged to the genera Staphylococcus, Bacillus, Francisella, and Corynebacterium, which were reported with high relative abundance from all months. No significant correlation occurred between the abundance of microbial families or genera in H. dromedarii ticks and the ambient temperature. Our findings revealed, for the first time in the UAE, temporal fluctuations of microbial communities in H. dromedarii ticks and provided key insights on the interaction between different microbial groups. Moreover, our results contribute to the current understanding of disease development and allow more investigations for potentially pathogenic microbiota.

9.
Front Microbiol ; 13: 854803, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35369485

RESUMEN

Among blood-sucking arthropods, ticks are recognized as being of prime global importance because of their role as vectors of pathogens affecting human and animal health. Ticks carry a variety of pathogenic, commensal, and symbiotic microorganisms. For the latter, studies are available concerning the detection of endosymbionts, but their role in the physiology and ecology of ticks remains largely unexplored. This review paper focuses on tick endosymbionts of the genera Coxiella, Rickettsia, Francisella, Midichloria, and Wolbachia, and their impact on ticks and tick-pathogen interactions that drive disease risk. Tick endosymbionts can affect tick physiology by influencing nutritional adaptation, fitness, and immunity. Further, symbionts may influence disease ecology, as they interact with tick-borne pathogens and can facilitate or compete with pathogen development within the vector tissues. Rickettsial symbionts are frequently found in ticks of the genera of Ixodes, Amblyomma, and Dermacentor with relatively lower occurrence in Rhipicephalus, Haemaphysalis, and Hyalomma ticks, while Coxiella-like endosymbionts (CLEs) were reported infecting almost all tick species tested. Francisella-like endosymbionts (FLEs) have been identified in tick genera such as Dermacentor, Amblyomma, Ornithodoros, Ixodes, and Hyalomma, whereas Wolbachia sp. has been detected in Ixodes, Amblyomma, Hyalomma, and Rhipicephalus tick genera. Notably, CLEs and FLEs are obligate endosymbionts essential for tick survival and development through the life cycle. American dog ticks showed greater motility when infected with Rickettsia, indirectly influencing infection risk, providing evidence of a relationship between tick endosymbionts and tick-vectored pathogens. The widespread occurrence of endosymbionts across the tick phylogeny and evidence of their functional roles in ticks and interference with tick-borne pathogens suggests a significant contribution to tick evolution and/or vector competence. We currently understand relatively little on how these endosymbionts influence tick parasitism, vector capacity, pathogen transmission and colonization, and ultimately on how they influence tick-borne disease dynamics. Filling this knowledge gap represents a major challenge for future research.

10.
Parasit Vectors ; 15(1): 30, 2022 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-35057842

RESUMEN

BACKGROUND: Hyalomma anatolicum is a widely distributed tick species that acts as a vector transmitting tick-borne pathogens (TBPs) in livestock. Such pathogens affect the health of livestock and consequently reduce their productivity. Knowledge about the microbial communities (pathogens and endosymbionts) of ticks in the United Arab Emirates (UAE) is scarce. Therefore, the aim of the present study was to quantify microbial diversity in H. anatolicum using next-generation sequencing (NGS) technology. METHODS: Hyalomma anatolicum ticks were collected from livestock in the emirates of Abu Dhabi, Dubai and Sharjah in the UAE during 2019. DNA was extracted from 175 male ticks sampled from livestock (n = 78) and subjected to NGS. The 16S rRNA gene was analyzed using the Illumina MiSeq platform to determine the bacterial communities. Principal coordinates analysis (PCA) was performed to identify patterns of diversity in the bacterial communities. RESULTS: Twenty-six bacterial families with high relative abundance were identified, of which the most common were Staphylococcaceae, Francisellaceae, Corynebacteriaceae, Enterobacteriaceae, Moraxellaceae, Bacillaceae, Halomonadaceae, Xanthomonadaceae, Pseudomonadaceae, Enterococcaceae, Actinomycetaceae and Streptococcaceae. The diversity of the microbial communities in terms of richness and evenness was different at the three study locations, with the PCA showing clear clusters separating the microbial communities in ticks collected at Abu Dhabi, Dubai, and Sharjah. The presence of bacterial families harboring pathogenic genera showed that H. anatolicum could pose a potential threat to livestock and food security in the UAE. CONCLUSIONS: The study is the first to document important data on the microbial communities associated with H. anatolicum in the UAE. This knowledge will facilitate a better understanding of the distribution pattern of microbes in livestock ticks in the UAE and, ultimately, will aid in deciphering the relationships between microbes and in the exploration of potential factors towards developing effective management strategies.


Asunto(s)
Bacterias/genética , Bacterias/aislamiento & purificación , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Ixodidae/microbiología , Ganado/parasitología , Microbiota/genética , Infestaciones por Garrapatas/veterinaria , Animales , Bacterias/clasificación , Estudios Transversales , Variación Genética , Masculino , Infestaciones por Garrapatas/epidemiología , Enfermedades por Picaduras de Garrapatas/epidemiología , Enfermedades por Picaduras de Garrapatas/microbiología , Enfermedades por Picaduras de Garrapatas/transmisión , Emiratos Árabes Unidos/epidemiología
11.
Insects ; 12(11)2021 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-34821817

RESUMEN

Ticks are important arthropod vectors that serve as reservoirs of pathogens. Rapid urbanization and changes in animal breeding practices could be causing a rise in tick burden on animals. Studies on tick distribution on livestock and tick molecular diversity from the United Arab Emirates (UAE) are limited. The aim of this study was to (i) provide molecular and morphological identification of tick species, (ii) compare tick infestation between different hosts, (iii) compare tick infestation in relation to the sex of the host, and (iv) assess the prevalence of tick species on hosts. A total of 5950 ticks were collected from camels (4803 ticks), cows (651 ticks), goats (219 ticks), and sheep (277 ticks). Ticks were identified based on morphological characters at the species level using taxonomic keys. In addition, Polymerase Chain Reaction (PCR) amplification of the cytochrome oxidase subunit 1 (cox1) and 16S rRNA mitochondrial genes was used to identify ticks. Four species were confirmed based on molecular and morphological characterization, namely, Hyalomma dromedarii, Hyalomma anatolicum, Rhipicephalus sanguineus, and Amblyomma lepidum. Hyalomma dromedarii (94.3%) was the most abundant species, followed by H. anatolicum (32.8%). Camels were heavily infested (94%) with ticks as compared to cows (38%), sheep (37%), and goats (14%). Widespread occurrence of these four tick species in the UAE poses a risk of spreading tick-borne pathogens wherever the conditions of infection prevail.

12.
Pathogens ; 10(8)2021 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-34451469

RESUMEN

Ticks and associated tick-borne diseases in livestock remain a major threat to the health of animals and people worldwide. However, in the United Arab Emirates (UAE), very few studies have been conducted on tick-borne microorganisms thus far. The purpose of this cross-sectional DNA-based study was to assess the presence and prevalence of tick-borne Francisella sp., Rickettsia sp., and piroplasmids in ticks infesting livestock, and to estimate their infection rates. A total of 562 tick samples were collected from camels, cows, sheep, and goats in the Emirates of Abu Dhabi, Dubai, and Sharjah from 24 locations. DNA was extracted from ticks and PCR was conducted. We found that Hyalomma dromedarii ticks collected from camels had Francisella sp. (5.81%) and SFG Rickettsia (1.36%), which was 99% similar to Candidatus Rickettsia andeanae and uncultured Rickettsia sp. In addition, Hyalomma anatolicum ticks collected from cows were found to be positive for Theileria annulata (4.55%), whereas H. anatolicum collected from goats were positive for Theileria ovis (10%). The widespread abundance of Francisella of unknown pathogenicity and the presence of Rickettsia are a matter of concern. The discovery of T. ovis from relatively few samples from goats indicates the overall need for more surveillance. Increasing sampling efforts over a wider geographical range within the UAE could reveal the true extent of tick-borne diseases in livestock. Moreover, achieving successful tick-borne disease control requires more research and targeted studies evaluating the pathogenicity and infection rates of many microbial species.

13.
Insects ; 12(1)2021 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-33477991

RESUMEN

Ticks are important vectors of an array of viral, bacterial and protozoan pathogens resulting in a wide range of animal and human diseases. There is limited information in the literature about tick species in the Middle East and North Africa (MENA) countries, even though they have suitable climate and vegetation for ticks and their hosts. We reviewed the occurrence of tick species and the pathogens they transmit from the MENA on published papers from 1901-2020. We found taxonomic records of 55 tick species infesting livestock representing the following eight genera: Ornithodoros, Otobius, Amblyomma, Dermacentor, Haemaphysalis, Hyalomma, Ixodes, and Rhipicephalus. In addition, 15 pathogens were recorded causing diseases of significance, with Crimean-Congo hemorrhagic fever, theileriosis, babesiosis and anaplasmosis being widely distributed diseases in the region. In recent decades, there has been increasing trends in disease occurrence and movement associated with global movement of humans and global trade of animals. We suggest that disease control and prevention could be achieved effectively through good integration between public health, veterinary medicine and animal management, and ecological approaches. We recommend further research in the areas of tick ecology and tick born-disease transmission. Furthermore, we suggest evaluation and improvement of disease control policies in the region.

14.
Saudi J Biol Sci ; 28(2): 1417-1425, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33281479

RESUMEN

The novel coronavirus disease (COVID-19) that emerged in December 2019 had caused substantial morbidity and mortality at the global level within few months. It affected economies, stopped travel, and isolated individuals and populations around the world. Wildlife, especially bats, serve as reservoirs of coronaviruses from which the variant Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) emerged that causes COVID-19. In this review, we describe the current knowledge on COVID-19 and the significance of wildlife hosts in its emergence. Mammalian and avian coronaviruses have diverse host ranges with distinct lineages of coronaviruses. Recombination and reassortments occur more frequently in mixed-animal markets where diverse viral genotypes intermingle. Human coronaviruses have evolved through gene gains and losses primarily in interfaces where wildlife and humans come in frequent contact. There is a gap in our understanding of bats as reservoirs of coronaviruses and there is a misconception that bats periodically transmit coronaviruses to humans. Future research should investigate bat viral diversity and loads at interfaces between humans and bats. Furthermore, there is an urgent need to evaluate viral strains circulating in mixed animal markets, where the coronaviruses circulated before becoming adapted to humans. We propose and discuss a management intervention plan for COVID-19 and raise questions on the suitability of current containment plans. We anticipate that more virulent coronaviruses could emerge unless proper measures are taken to limit interactions between diverse wildlife and humans in wild animal markets.

15.
Sci Rep ; 10(1): 17035, 2020 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-33046763

RESUMEN

Hyalomma dromedarii is an important blood-feeding ectoparasite that affects the health of camels. We assessed the profile of bacterial communities associated with H. dromedarii collected from camels in the eastern part of the UAE in 2010 and 2019. A total of 100 partially engorged female ticks were taken from tick samples collected from camels (n = 100; 50/year) and subjected to DNA extraction and sequencing. The 16S rRNA gene was amplified from genomic DNA and sequenced using Illumina MiSeq platform to elucidate the bacterial communities. Principle Coordinates Analysis (PCoA) was conducted to determine patterns of diversity in bacterial communities. In 2010 and 2019, we obtained 899,574 and 781,452 read counts and these formed 371 and 191 operational taxonomic units (OTUs, clustered at 97% similarity), respectively. In both years, twenty-five bacterial families with high relative abundance were detected and the following were the most common: Moraxellaceae, Enterobacteriaceae, Staphylococcaceae, Bacillaceae, Corynebacteriaceae, Flavobacteriaceae, Francisellaceae, Muribaculaceae, Neisseriaceae, and Pseudomonadaceae. Francisellaceae and Enterobacteriaceae coexist in H. dromedarii and we suggest that they thrive under similar conditions and microbial interactions inside the host. Comparisons of diversity indicated that microbial communities differed in terms of richness and evenness between 2010 and 2019, with higher richness but lower evenness in communities in 2010. Principle coordinates analyses showed clear clusters separating microbial communities in 2010 and 2019. The differences in communities suggested that the repertoire of microbial communities have shifted. In particular, the significant increase in dominance of Francisella and the presence of bacterial families containing pathogenic genera shows that H. dromedarii poses a serious health risk to camels and people who interact with them. Thus, it may be wise to introduce active surveillance of key genera that constitute a health hazard in the livestock industry to protect livestock and people.


Asunto(s)
Camelus/parasitología , Microbiota/genética , ARN Ribosómico 16S/genética , Infestaciones por Garrapatas/veterinaria , Garrapatas/microbiología , Animales , ADN Bacteriano/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Infestaciones por Garrapatas/parasitología
16.
Insects ; 11(5)2020 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-32456119

RESUMEN

Hyalomma dromedarii is the most important tick species infesting camels in the Middle East. So far, there are no studies on the population dynamics of H. dromedarii ticks on camels in the United Arab Emirates (UAE). Thus, the current study was performed: (1) to assess H. dromedarii population dynamics under common camel breeding and management practices in the study area, (2) to evaluate H. dromedarii life stage changes and sex ratio over time, and (3) to measure parasitological indicators of H. dromedarii infestation. We conducted monthly on-site tick visual counts and collection from camels in Al Ain, UAE, over 12 months. Our results show that the infestation prevalence was very high during the whole study period, with a mean of 94.33%. The maximum infestation intensity occurred in June, while the minimum occurred in January. Overall, H. dromedarii ticks were found on camels during the entire year in spite of monthly applications of an acaricide. This study reveals that H. dromedarii has a very high prevalence and continuous presence on camels in the UAE regardless of the weather fluctuations and acaricide applications and showed the need for an effective control strategy.

17.
Saudi J Biol Sci ; 24(5): 1016-1022, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28663697

RESUMEN

Quantitative studies concerning total and differential haemocyte counts and abnormalities were performed under laboratory conditions for larvae, pupae and adults collected from a wild Apis dorsata colony. Haemolymph samples were observed immediately, thirty and sixty minutes after field recommended concentration exposure of five different insecticides. Total haemocyte counts were significantly higher for larvae and pupae but less for adult bees, however, differential haemocyte counts insignificantly different. Exposure of insecticides showed variable response for tested insecticides with immediate increased change with ethofenprox, diafenthiuron and imidacloprid but decreased for all tested insecticides after sixty minutes. For differential haemocyte counts, plasmatocytes and granulocytes increased with exposure of insecticides. Immune response of haemocytes against insecticides showed different degrees of abnormalities like agglutination, denucleation and cell shape distortion. Such studies may help in possible identification of insect defense mechanisms against their exposure to external hazards for instance insecticide exposure.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...