Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Elife ; 112022 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-36098503

RESUMEN

Lysosomes are essential for cellular recycling, nutrient signaling, autophagy, and pathogenic bacteria and viruses invasion. Lysosomal fusion is fundamental to cell survival and requires HOPS, a conserved heterohexameric tethering complex. On the membranes to be fused, HOPS binds small membrane-associated GTPases and assembles SNAREs for fusion, but how the complex fulfills its function remained speculative. Here, we used cryo-electron microscopy to reveal the structure of HOPS. Unlike previously reported, significant flexibility of HOPS is confined to its extremities, where GTPase binding occurs. The SNARE-binding module is firmly attached to the core, therefore, ideally positioned between the membranes to catalyze fusion. Our data suggest a model for how HOPS fulfills its dual functionality of tethering and fusion and indicate why it is an essential part of the membrane fusion machinery.


Our cells break down the nutrients that they receive from the body to create the building blocks needed to keep us alive. This is done by compartments called lysosomes that are filled with a cocktail of proteins called enzymes, which speed up the breakdown process. Lysosomes are surrounded by a membrane, a barrier of fatty molecules that protects the rest of the cell from being digested. When new nutrients reach the cell, they travel to the lysosome packaged in vesicles, which have their own fatty membrane. To allow the nutrients to enter the lysosome without creating a leak, the membranes of the vesicles and the lysosome must fuse. The mechanism through which these membranes fuse is not fully clear. It is known that both fusing membranes must contain proteins called SNAREs, which wind around each other when they interact. However, this alone is not enough. Other proteins are also required to tether the membranes together before they fuse. To understand how these tethers play a role, Shvarev, Schoppe, König et al. studied the structure of the HOPS complex from yeast. This assembly of six proteins is vital for lysosomal fusion and, has a composition similar to the equivalent complex in humans. Using cryo-electron microscopy, a technique that relies on freezing purified proteins to image them with an electron microscope and reveal their structure, allowed Shvarev, Schoppe, König et al. to provide a model for how HOPS interacts with SNAREs and membranes. In addition to HOPS acting as a tether to bring the membranes together, it can also bind directly to SNAREs. This creates a bridge that allows the proteins to wrap around each other, driving the membranes to fuse. HOPS is a crucial component in the cellular machinery, and mutations in the complex can cause devastating neurological defects. The complex is also targeted by viruses ­ such as SARS-CoV-2 ­ that manipulate HOPS to reduce its activity. Shvarev, Schoppe, König et al.'s findings could help researchers to develop drugs to maintain or recover the activity of HOPS. However, this will require additional information about its structure and how the complex acts in the biological environment of the cell.


Asunto(s)
Fusión de Membrana , Proteínas de Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Microscopía por Crioelectrón , Proteínas de Unión al GTP rab/metabolismo , Proteínas SNARE/metabolismo , Lisosomas/metabolismo , Vacuolas/metabolismo
2.
J Biol Chem ; 297(5): 101334, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34688652

RESUMEN

Vesicle formation at endomembranes requires the selective concentration of cargo by coat proteins. Conserved adapter protein complexes at the Golgi (AP-3), the endosome (AP-1), or the plasma membrane (AP-2) with their conserved core domain and flexible ear domains mediate this function. These complexes also rely on the small GTPase Arf1 and/or specific phosphoinositides for membrane binding. The structural details that influence these processes, however, are still poorly understood. Here we present cryo-EM structures of the full-length stable 300 kDa yeast AP-3 complex. The structures reveal that AP-3 adopts an open conformation in solution, comparable to the membrane-bound conformations of AP-1 or AP-2. This open conformation appears to be far more flexible than AP-1 or AP-2, resulting in compact, intermediate, and stretched subconformations. Mass spectrometrical analysis of the cross-linked AP-3 complex further indicates that the ear domains are flexibly attached to the surface of the complex. Using biochemical reconstitution assays, we also show that efficient AP-3 recruitment to the membrane depends primarily on cargo binding. Once bound to cargo, AP-3 clustered and immobilized cargo molecules, as revealed by single-molecule imaging on polymer-supported membranes. We conclude that its flexible open state may enable AP-3 to bind and collect cargo at the Golgi and could thus allow coordinated vesicle formation at the trans-Golgi upon Arf1 activation.


Asunto(s)
Aparato de Golgi/metabolismo , Complejos Multiproteicos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Transporte Biológico Activo , Aparato de Golgi/genética , Complejos Multiproteicos/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
3.
Elife ; 92020 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-32391792

RESUMEN

Endosomes and lysosomes harbor Rab5 and Rab7 on their surface as key proteins involved in their identity, biogenesis, and fusion. Rab activation requires a guanine nucleotide exchange factor (GEF), which is Mon1-Ccz1 for Rab7. During endosome maturation, Rab5 is replaced by Rab7, though the underlying mechanism remains poorly understood. Here, we identify the molecular determinants for Rab conversion in vivo and in vitro, and reconstitute Rab7 activation with yeast and metazoan proteins. We show (i) that Mon1-Ccz1 is an effector of Rab5, (ii) that membrane-bound Rab5 is the key factor to directly promote Mon1-Ccz1 dependent Rab7 activation and Rab7-dependent membrane fusion, and (iii) that this process is regulated in yeast by the casein kinase Yck3, which phosphorylates Mon1 and blocks Rab5 binding. Our study thus uncovers the minimal feed-forward machinery of the endosomal Rab cascade and a novel regulatory mechanism controlling this pathway.


Asunto(s)
Endosomas/metabolismo , Factores de Intercambio de Guanina Nucleótido/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Vacuolas/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Proteínas de Unión al GTP rab/metabolismo , Proteínas de Unión al GTP rab5/metabolismo , Animales , Quinasa de la Caseína I/metabolismo , Drosophila , Proteínas de Drosophila/metabolismo , Liposomas/metabolismo , Fusión de Membrana , Fosfatos de Fosfatidilinositol/metabolismo , Fosforilación , Unión Proteica , Prenilación de Proteína , Células Sf9 , Proteínas de Unión al GTP rab/genética , Proteínas de Unión al GTP rab5/genética , Proteínas de Unión a GTP rab7
4.
J Biol Chem ; 293(2): 731-739, 2018 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-29184002

RESUMEN

The identity of organelles in the endomembrane system of any eukaryotic cell critically depends on the correctly localized Rab GTPase, which binds effectors and thus promotes membrane remodeling or fusion. However, it is still unresolved which factors are required and therefore define the localization of the correct fusion machinery. Using SNARE-decorated proteoliposomes that cannot fuse on their own, we now demonstrate that full fusion activity can be achieved by just four soluble factors: a soluble SNARE (Vam7), a guanine nucleotide exchange factor (GEF, Mon1-Ccz1), a Rab-GDP dissociation inhibitor (GDI) complex (prenylated Ypt7-GDI), and a Rab effector complex (HOPS). Our findings reveal that the GEF Mon1-Ccz1 is necessary and sufficient for stabilizing prenylated Ypt7 on membranes. HOPS binding to Ypt7-GTP then drives SNARE-mediated fusion, which is fully GTP-dependent. We conclude that an entire fusion cascade can be controlled by a GEF.


Asunto(s)
Factores de Intercambio de Guanina Nucleótido/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteína 25 Asociada a Sinaptosomas/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Proteínas de Unión al GTP rab/metabolismo , Endosomas/metabolismo , Inhibidores de Disociación de Guanina Nucleótido/metabolismo , Lisosomas/química , Fusión de Membrana , Prenilación , Unión Proteica , Transporte de Proteínas , Proteolípidos/química , Saccharomyces cerevisiae/metabolismo
5.
Mol Biol Cell ; 28(2): 322-332, 2017 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-27852901

RESUMEN

Membrane fusion at endomembranes requires cross-talk between Rab GTPases and tethers to drive SNARE-mediated lipid bilayer mixing. Several tethers have multiple Rab-binding sites with largely untested function. Here we dissected the lysosomal HOPS complex as a tethering complex with just two binding sites for the Rab7-like Ypt7 protein to determine their relevance for fusion. Using tethering and fusion assays combined with HOPS mutants, we show that HOPS-dependent fusion requires both Rab-binding sites, with Vps39 being the stronger Ypt7 interactor than Vps41. The intrinsic amphipathic lipid packaging sensor (ALPS) motif within HOPS Vps41, a target of the vacuolar kinase Yck3, is dispensable for tethering and fusion but can affect tethering if phosphorylated. In combination, our data demonstrate that a multivalent tethering complex uses its two Rab bindings to determine the place of SNARE assembly and thus fusion at endomembranes.


Asunto(s)
Fusión de Membrana/fisiología , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Unión al GTP rab/metabolismo , Sitios de Unión , Endosomas/metabolismo , Fosforilación , Unión Proteica , Transporte de Proteínas/fisiología , Proteínas SNARE/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiología , Vacuolas/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Proteínas de Unión al GTP rab/fisiología
6.
J Cell Sci ; 127(Pt 5): 1043-51, 2014 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-24413168

RESUMEN

To function in fusion and signaling, Rab GTPases need to be converted into their active GTP form. We previously identified the conserved Mon1-Ccz1 complex as the guanine nucleotide exchange factor (GEF) of the yeast Rab7 GTPase Ypt7. To address the possible GEF mechanism, we generated a homology model of the predicted longin domains of Mon1 and Ccz1 using the Rab-binding surface of the TRAPP complex as a template. On the basis of this, we identified mutations in both yeast Mon1 and Ccz1 that block Ypt7 activation, without affecting heterodimer formation and intracellular localization of Mon1 and Ccz1 at endosomes. Strikingly, the activity of the isolated Mon1-Ccz1 complex for Ypt7 is highly stimulated on membranes, and is promoted by the same anionic phospholipids such as phosphatidylinositol-3-phosphate (PI3P), which also support membrane association of the GEF complex. Our data imply that the GEF activity of the Mon1-Ccz1 complex towards Rab7/Ypt7 requires the interface formed by their longin domains and profits strongly from its association with the organelle surface.


Asunto(s)
Factores de Intercambio de Guanina Nucleótido/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Proteínas de Transporte Vesicular/metabolismo , Proteínas de Unión al GTP rab/metabolismo , Factores de Intercambio de Guanina Nucleótido/química , Membranas Intracelulares/enzimología , Fosfatos de Fosfatidilinositol/química , Fosfatidilserinas/química , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Transporte de Proteínas , Proteínas de Saccharomyces cerevisiae/química , Vacuolas/metabolismo , Vacuolas/ultraestructura , Proteínas de Transporte Vesicular/química , Proteínas de Unión al GTP rab/química
7.
J Biol Chem ; 288(7): 5166-75, 2013 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-23264632

RESUMEN

Transport along the endolysosomal system requires multiple fusion events at early and late endosomes. Deletion of several endosomal fusion factors, including the Vac1 tether and the Class C core vacuole/endosome tethering (CORVET) complex-specific subunits Vps3 and Vps8, results in a class D vps phenotype. As these mutants have an apparently similar defect in endosomal transport, we asked whether CORVET and Vac1 could still act in distinct tethering reactions. Our data reveal that CORVET mutants can be rescued by Vac1 overexpression in the endocytic pathway but not in CPY or Cps1 sorting to the vacuole. Moreover, when we compared the ultrastructure, CORVET mutants were most similar to deletions of the Rab Vps21 and its guanine nucleotide exchange factor Vps9 and different from vac1 deletion, indicating separate functions. Likewise, CORVET still localized to endosomes even in the absence of Vac1, whereas Vac1 localization became diffuse in CORVET mutants. Importantly, CORVET localization requires the Rab5 homologs Vps21 and Ypt52, whereas Vac1 localization is strictly Vps21-dependent. In this context, we also uncover that Muk1 can compensate for loss of Vps9 in CORVET localization, indicating that two Rab5 guanine nucleotide exchange factors operate in the endocytic pathway. Overall, our study reveals a unique role of CORVET in the sorting of biosynthetic cargo to the vacuole/lysosome.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Endosomas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Vacuolas/metabolismo , Transporte Biológico , Canavanina/metabolismo , Endocitosis , Eliminación de Gen , Lisosomas/metabolismo , Quinasas Quinasa Quinasa PAM/metabolismo , Microscopía Fluorescente/métodos , Modelos Biológicos , Mutación , Fenotipo , Proteínas de Unión al GTP rab5/metabolismo
8.
Traffic ; 12(11): 1592-603, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21777356

RESUMEN

A large number of proteins involved in the biogenesis of yeast endosomes and vacuoles have been identified based on screens that scored for inactivation of proteins. Such screens may, however, miss important regulators of the pathway. Here, we present a visual screen in which we examined the effects on vacuole morphology if any of the 6153 yeast open reading frames was overexpressed. Using a progressive screening procedure, we could identify a total of 53 genes. Among the most striking endosomal proteins are the CORVET/HOPS subunits Vps3, Vps18 and Vps39 and the putative tethering inhibitor Ivy1. Furthermore, six endosomal sorting complex related to transport (ESCRT) proteins led to altered vacuole morphology if overproduced. Among the novel proteins, we identify Yer128w as an endosomal protein that interacts with the AAA-ATPase Vps4, and therefore named it Vfa1 (Vps Four-Associated 1). We present evidence on the possible role of these novel proteins in trafficking to the vacuole. Our data provide novel insights into the regulation of protein trafficking.


Asunto(s)
Complejos de Clasificación Endosomal Requeridos para el Transporte/genética , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Endosomas/genética , Endosomas/metabolismo , Procesamiento Proteico-Postraduccional , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Complejos de Clasificación Endosomal Requeridos para el Transporte/biosíntesis , Sistemas de Lectura Abierta , Transporte de Proteínas , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/biosíntesis , Vacuolas/genética , Vacuolas/metabolismo
9.
J Biol Chem ; 286(28): 25039-46, 2011 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-21550981

RESUMEN

Retrograde vesicular transport from the Golgi to the ER requires the Dsl1 tethering complex, which consists of the three subunits Dsl1, Dsl3, and Tip20. It forms a stable complex with the SNAREs Ufe1, Use1, and Sec20 to mediate fusion of COPI vesicles with the endoplasmic reticulum. Here, we analyze molecular interactions between five SNAREs of the ER (Ufe1, Use1, Sec20, Sec22, and Ykt6) and the Dsl1 complex in vitro and in vivo. Of the two R-SNAREs, Sec22 is preferred over Ykt6 in the Dsl-SNARE complex. The NSF homolog Sec18 can displace Ykt6 but not Sec22, suggesting a regulatory function for Ykt6. In addition, our data also reveal that subunits of the Dsl1 complex (Dsl1, Dsl3, and Tip20), as well as the SNAREs Ufe1 and Sec20, are ER-resident proteins that do not seem to move into COPII vesicles. Our data support a model, in which a tethering complex is stabilized at the organelle membrane by binding to SNAREs, recognizes the incoming vesicle via its coat and then promotes its SNARE-mediated fusion.


Asunto(s)
Vesículas Cubiertas por Proteínas de Revestimiento/metabolismo , Retículo Endoplásmico/metabolismo , Fusión de Membrana/fisiología , Complejos Multiproteicos/metabolismo , Proteínas SNARE/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas Solubles de Unión al Factor Sensible a la N-Etilmaleimida/metabolismo , Vesículas Cubiertas por Proteínas de Revestimiento/genética , Retículo Endoplásmico/genética , Modelos Biológicos , Complejos Multiproteicos/genética , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Proteínas SNARE/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas Solubles de Unión al Factor Sensible a la N-Etilmaleimida/genética
10.
J Cell Biol ; 191(4): 845-59, 2010 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-21079247

RESUMEN

Tethering factors are organelle-specific multisubunit protein complexes that identify, along with Rab guanosine triphosphatases, transport vesicles and trigger their SNARE-mediated fusion of specific transport vesicles with the target membranes. Little is known about how tethering factors discriminate between different trafficking pathways, which may converge at the same organelle. In this paper, we describe a phosphorylation-based switch mechanism, which allows the homotypic vacuole fusion protein sorting effector subunit Vps41 to operate in two distinct fusion events, namely endosome-vacuole and AP-3 vesicle-vacuole fusion. Vps41 contains an amphipathic lipid-packing sensor (ALPS) motif, which recognizes highly curved membranes. At endosomes, this motif is inserted into the lipid bilayer and masks the binding motif for the δ subunit of the AP-3 complex, Apl5, without affecting the Vps41 function in endosome-vacuole fusion. At the much less curved vacuole, the ALPS motif becomes available for phosphorylation by the resident casein kinase Yck3. As a result, the Apl5-binding site is exposed and allows AP-3 vesicles to bind to Vps41, followed by specific fusion with the vacuolar membrane. This multifunctional tethering factor thus discriminates between trafficking routes by switching from a curvature-sensing to a coat recognition mode upon phosphorylation.


Asunto(s)
Membrana Celular/metabolismo , Membrana Celular/ultraestructura , Complejos Multiproteicos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/citología , Vacuolas/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Secuencias de Aminoácidos , Animales , Quinasa de la Caseína I/genética , Quinasa de la Caseína I/metabolismo , Membrana Celular/química , Endosomas/metabolismo , Datos de Secuencia Molecular , Fosforilación , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Alineación de Secuencia , Proteínas de Transporte Vesicular/genética , Proteínas de Unión al GTP rab/genética , Proteínas de Unión al GTP rab/metabolismo
11.
Curr Biol ; 20(18): 1654-9, 2010 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-20797862

RESUMEN

Rab GTPases coordinate membrane fusion reactions [1]. Rab-GDP requires a guanine nucleotide exchange factor (GEF) for its conversion to the active GTP form. It then binds to effectors such as multimeric tethering complexes and supports fusion [2]. GTPase-activating proteins (GAPs) promote GTP hydrolysis to inactivate the Rab. GEFs are thus critical activators of fusion reactions [3, 4]. The Rab GEF family is diverse, ranging from multimeric complexes [5] to monomeric GEFs [6-9]. At the late endosome, Rab7 activation is critical for endosomal maturation. The yeast Rab7 homolog Ypt7 binds to the homotypic fusion and protein sorting (HOPS) complex [10, 11]. Its subunit Vps39/Vam6 has been proposed as a GEF for Ypt7 [12] and the Rag GTPase Gtr1 [13], but other genetic evidence has implicated the endosomal protein Ccz1 as a GEF for Ypt7 [14]. Ccz1 and its binding partner Mon1 have been linked to endosomal transport and maturation [15-20]. We now provide evidence that the dimeric Mon1-Ccz1 complex is the Rab7/Ypt7 GEF. The Mon1-Ccz1 complex, but neither protein alone, counteracts GAP function in vivo, rescues in vitro fusion of vacuoles carrying Ypt7-GDP, and promotes nucleotide exchange on Ypt7 independently of Vps39/HOPS. Our data indicate that the Mon1-Ccz1 complex triggers endosomal maturation by activating Ypt7 on late endosomes.


Asunto(s)
Endosomas/metabolismo , Factores de Intercambio de Guanina Nucleótido/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Proteínas de Unión al GTP rab/metabolismo , Factores de Intercambio de Guanina Nucleótido/genética , Complejos Multiproteicos/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Vacuolas/metabolismo , Proteínas de Transporte Vesicular/genética , Proteínas de Unión al GTP rab/genética , Proteínas Activadoras de ras GTPasa/genética , Proteínas Activadoras de ras GTPasa/metabolismo
12.
Traffic ; 11(10): 1334-46, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20604902

RESUMEN

Within the endomembrane system of eukaryotic cells, multisubunit tethering complexes together with their corresponding Rab-GTPases coordinate vesicle tethering and fusion. Here, we present evidence that two homologous hexameric tethering complexes, the endosomal CORVET (Class C core vacuole/endosome transport) and the vacuolar HOPS (homotypic vacuole fusion and protein sorting) complex, have similar subunit topologies. Both complexes contain two Rab-binding proteins at one end, and the Sec1/Munc18-like Vps33 at the opposite side, suggesting a model on membrane bridging via Rab-GTP and SNARE binding. In agreement, HOPS activity can be reconstituted using purified subcomplexes containing the Rab and Vps33 module, but requires all six subunits for activity. At the center of HOPS and CORVET, the class C proteins Vps11 and Vps18 connect the two parts, and Vps11 binds both HOPS Vps39 and CORVET Vps3 via the same binding site. As HOPS Vps39 is also found at endosomes, our data thus suggest that these tethering complexes follow defined but distinct assembly pathways, and may undergo transition by simple subunit interchange.


Asunto(s)
Subunidades alfa de la Proteína de Unión al GTP/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Proteínas de Unión al GTP rab/metabolismo , Endosomas/metabolismo , Subunidades alfa de la Proteína de Unión al GTP/química , Dominios y Motivos de Interacción de Proteínas , Proteínas de Saccharomyces cerevisiae/química , Vacuolas/metabolismo , Proteínas de Unión al GTP rab/química
13.
J Biomed Mater Res A ; 93(2): 763-75, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-19653306

RESUMEN

Recently, corrodible magnesium-based alloys have been introduced for use as cardiovascular stents and orthopedic implants. However, rapid corrosion rates have raised questions about their biocompatibility. Therefore, we developed a binary fluoride-coated magnesium-calcium alloy with improved degradation kinetics. Biocompatibility of the alloys was evaluated with metabolic assays (colorimetric WST-1 test). Furthermore, five different probes of magnesium-calcium alloys (MgCa 0.4, 0.6, 0.8, 1.2, and 2.0 wt %) were cocultivated with human smooth muscle cells and endothelial cells. To investigate the decomposition kinetics in a physiological environment the alloys were used untreated and fluoride coated (MgF(2)). Mg and Ca decreased the metabolic activity in vascular cells dose-dependently, with cytotoxic effects only at unphysiological concentrations. Uncoated magnesium alloys showed signs of decomposition after a short incubation time of 24 h in contrast to MgF(2) coated alloys. After 10 days smooth muscle and endothelial cells around the alloys were still alive, whereas colonization of the surfaces was only observed for smooth muscle cells. The fluoride-coated MgCa alloys exhibited good results concerning mechanical properties, degradation kinetics, and biocompatibility in vitro. We conclude that a binary fluoride magnesium-calcium alloy is a promising candidate for the production of cardiovascular stents.


Asunto(s)
Aleaciones , Calcio , Materiales Biocompatibles Revestidos , Fluoruros , Magnesio , Aleaciones/química , Aleaciones/metabolismo , Animales , Calcio/química , Calcio/metabolismo , Supervivencia Celular , Células Cultivadas , Materiales Biocompatibles Revestidos/química , Materiales Biocompatibles Revestidos/metabolismo , Corrosión , Células Endoteliales/citología , Células Endoteliales/metabolismo , Fluoruros/química , Fluoruros/metabolismo , Humanos , Magnesio/química , Magnesio/metabolismo , Ensayo de Materiales , Miocitos del Músculo Liso/citología , Miocitos del Músculo Liso/metabolismo , Stents , Propiedades de Superficie
14.
Biomaterials ; 27(10): 2193-200, 2006 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-16310850

RESUMEN

This study was conducted to determine the interaction of individual corrosion products from biodegradable iron stents with cells from the adjacent tissue. The response of human umbilical venous smooth muscle cells (SMCs) to an excess of ferrous ions was investigated in a cell culture model at the phenotypic and at the molecular level. When soluble ferrous ions were added to the cell culture medium the cell growth rate was reduced. Gene expression profiling indicated a reduction in the amounts of mRNA from genes that are required for cell proliferation. In addition, mRNA was regulated from multiple genes involved in iron homeostasis, DNA replication and lipid metabolism. In conclusion, ions released from iron stents could reduce the vascular SMC proliferation rate by influencing growth-related gene expression and may therefore play a beneficial role in antagonizing restenosis in vivo.


Asunto(s)
Proliferación Celular , Hierro/química , Miocitos del Músculo Liso/fisiología , Stents , Ciclo Celular/fisiología , Células Cultivadas , Corrosión , Perfilación de la Expresión Génica , Humanos , Hierro/metabolismo , Miocitos del Músculo Liso/citología , Análisis de Secuencia por Matrices de Oligonucleótidos , ARN Mensajero/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...