Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Int J Mol Sci ; 23(17)2022 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-36077078

RESUMEN

Activation of NF-κB transcription factor is strictly regulated to accurately direct cellular processes including inflammation, immunity, and cell survival. In the retina, the modulation of the NF-κB pathway is essential to prevent excessive inflammatory responses, which plays a pivotal role in many retinal neurodegenerative diseases, such as age-related macular degeneration (AMD), diabetic retinopathy (DR), and inherited retinal dystrophies (IRDs). A critical cytokine mediating inflammatory responses in retinal cells is tumor necrosis factor-alpha (TNFα), leading to the activation of several transductional pathways, including NF-κB. However, the multiple factors orchestrating the appropriate regulation of NF-κB in retinal cells still remain unclear. The present study explores how the ubiquitin-specific protease 48 (USP48) downregulation impacts the stability and transcriptional activity of NF-κB/p65 in retinal pigment epithelium (RPE), at both basal conditions and following TNFα stimulation. We described that USP48 downregulation stabilizes p65. Notably, the accumulation of p65 is mainly detectable in the nuclear compartment and it is accompanied by an increased NF-κB transcriptional activity. These results delineate a novel role of USP48 in negatively regulating NF-κB in retinal cells, providing new opportunities for therapeutic intervention in retinal pathologies.


Asunto(s)
FN-kappa B , Epitelio Pigmentado de la Retina , FN-kappa B/metabolismo , Retina/metabolismo , Epitelio Pigmentado de la Retina/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Proteasas Ubiquitina-Específicas/genética , Proteasas Ubiquitina-Específicas/metabolismo
2.
Int J Mol Sci ; 23(3)2022 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-35163099

RESUMEN

De novo somatic mutations are well documented in diseases such as neoplasia but are rarely reported in rare diseases. Hovewer, severe genetic diseases that are not compatible with embryonic development are caused exclusively by deleterious mutations that could only be found as mosaic and not as inherited mutations. We will review here the paradigmatic case of Incontinentia Pigmenti, a rare X-linked dominant disease caused by deficiency of the NEMO (also called IKKgamma) protein, which plays a pivotal role in tissue homeostasis. The loss-of-function mutations of NEMO are embryonically lethal in males while females survive because of unbalanced X-inactivation due to NEMO wild type (WT) expressing cells survival despite of NEMO mutant expressing cells. The few surviving IP males are obligatory mosaic mutants with the typical clinical presentation of IP in female. Indeed, the IP pathogenesis in the female and most likely also in the male somatic mosaics is based on the cellular effects of an impaired NEMO activity, but in the context of the interaction of genetically different cells in the affected tissue, which might underline the inflammatory status.


Asunto(s)
Quinasa I-kappa B/deficiencia , Quinasa I-kappa B/genética , Incontinencia Pigmentaria/patología , Mutación con Pérdida de Función , Mosaicismo , Humanos , Incontinencia Pigmentaria/etiología , Incontinencia Pigmentaria/metabolismo , Masculino
3.
Methods Mol Biol ; 2366: 243-254, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34236642

RESUMEN

The engagement of TNF on TNFR can result in cell survival or cell death depending on the different complex formation downstream this interaction. Here we describe reagents and assay procedures that can be used to study caspase-independent cell death (necroptosis) in cultured cells, in response to pharmacological interventions with NF-kappaB and death inhibitors. We provide protocol to detect death-specific proteins using immunoblot and to dissect necrosome complex by sequential co-immunoprecipitation of death-specific components during necroptosis.


Asunto(s)
Apoptosis , Necroptosis , Células Cultivadas , Humanos , FN-kappa B/metabolismo , Necrosis , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , Transducción de Señal , Factor de Necrosis Tumoral alfa/metabolismo
4.
Cell Death Dis ; 11(3): 210, 2020 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-32231206

RESUMEN

Escaping programmed cell death is a hallmark of cancer. NF-κB transcription factors are key regulator of cell survival and aberrant NF-κB signaling has been involved in the pathogenesis of most human malignancies. Although NF-κB is best known for its antiapoptotic role, other processes regulating the life/death balance, such as autophagy and necroptosis, seem to network with NF-κB. This review discusses how the reciprocal regulation of NF-κB, autophagy and programmed cell death affect cancer development and progression.


Asunto(s)
FN-kappa B/metabolismo , Neoplasias/genética , Autofagia , Humanos , Transducción de Señal
6.
Eur J Hum Genet ; 27(10): 1509-1518, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31231133

RESUMEN

Incontinentia pigmenti (IP; OMIM#308300) is a rare genetic disease resulting in neuroectodermal defects, which can lead to disability. At present, there is neither definitive cure available nor are there any sufficiently reliable insights to predict the severity of the disease. We launched the Incontinentia Pigmenti Genetic Biobank (IPGB) project ( http://www.igb.cnr.it/ipgb ) in 2015 to establish a large-scale deposit of biological samples, to provide detailed clinical information about children diagnosed with IP and to facilitate research. We have built a cohort comprising samples of 381 clinically confirmed patients with IP and 633 healthy individuals recruited through IP patients' associations. The collection includes 269 trios, 83 duos, and 95 families with at least two affected members and represents an extensive dataset (200 cooperative medical institutes, 139 in Italy and 61 worldwide) that enables a comprehensive phenotyping. Joining the IPGB guarantees all participants access to the results including the genetic testing of IP and the long-term storage of the samples. The IPGB is the largest IP sample collection and one of the largest rare-disease-oriented collections in the world and will be open to requests for access to data by the national and international scientific community.


Asunto(s)
Bancos de Muestras Biológicas , Incontinencia Pigmentaria/genética , Enfermedades Raras , Bases de Datos Genéticas , Femenino , Geografía Médica , Salud Global , Humanos , Incontinencia Pigmentaria/diagnóstico , Incontinencia Pigmentaria/epidemiología , Masculino , Linaje , Sistema de Registros , Investigación , Proyectos de Investigación , Factores Socioeconómicos , Navegador Web
7.
Inflamm Res ; 67(4): 315-326, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29230506

RESUMEN

OBJECTIVE: N6-isopentenyladenosine (iPA) is an intermediate of the mevalonate pathway that exhibits various anti-cancer effects. However, studies on its anti-inflammatory activity are scarce and underlying molecular mechanisms are unknown. Therefore, we aimed to investigate the ability of iPA to exert anti-inflammatory effects in the human cystic fibrosis (CF) cell model of exacerbated inflammation. MATERIALS AND METHODS: TNFα-stimulated CF cells CuFi-1 and its normal counterpart NuLi-1 were pre-treated with increasing concentrations of iPA and cell viability and proliferation were assessed by MTT and BrdU assays. The effect of iPA on IL-8 and RANTES secretion was determined by ELISA, and the activation and expression of signaling molecules and selenoproteins were studied by Western blot. To assess the direct effect of iPA on NFκB activity, luciferase assay was performed on TNFα-stimulated HEK293/T cells transfected with a NFκB reporter plasmid. RESULTS: We demonstrated for the first time that iPA prevents IL-8 and RANTES release in TNFα-stimulated CF cells and this effect is mediated by increasing the expression of the direct NFκB inhibitor IκBα and decreasing the levels of STAT3. Consistent with this, we showed that iPA inhibited TNFα-mediated NFκB activation in HEK/293T cells. Finally, we also found that iPA improved the levels of glutathione peroxidase 1 and thioredoxin reductase 1 only in CF cells suggesting its ability to maintain sufficient expression of these anti-oxidant selenoproteins. CONCLUSIONS: Our findings indicate that iPA can exert anti-inflammatory activity especially in the cases of excessive inflammatory response as in CF.


Asunto(s)
Antiinflamatorios/farmacología , Fibrosis Quística/metabolismo , Isopenteniladenosina/farmacología , FN-kappa B/metabolismo , Factor de Transcripción STAT3/metabolismo , Línea Celular , Supervivencia Celular , Quimiocina CCL5/metabolismo , Fibrosis Quística/enzimología , Glutatión Peroxidasa/metabolismo , Células HEK293 , Humanos , Inflamación/metabolismo , Interleucina-8/metabolismo , Isopenteniladenosina/toxicidad , FN-kappa B/antagonistas & inhibidores , Factor de Transcripción STAT3/antagonistas & inhibidores , Transducción de Señal , Reductasa de Tiorredoxina-Disulfuro/metabolismo , Factor de Necrosis Tumoral alfa/farmacología
8.
J Allergy Clin Immunol ; 140(6): 1671-1682.e2, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28249776

RESUMEN

BACKGROUND: Incontinentia pigmenti (IP; MIM308300) is a severe, male-lethal, X-linked, dominant genodermatosis resulting from loss-of-function mutations in the IKBKG gene encoding nuclear factor κB (NF-κB) essential modulator (NEMO; the regulatory subunit of the IκB kinase [IKK] complex). In 80% of cases of IP, the deletion of exons 4 to 10 leads to the absence of NEMO and total inhibition of NF-κB signaling. Here we describe a new IKBKG mutation responsible for IP resulting in an inactive truncated form of NEMO. OBJECTIVES: We sought to identify the mechanism or mechanisms by which the truncated NEMO protein inhibits the NF-κB signaling pathway. METHODS: We sequenced the IKBKG gene in patients with IP and performed complementation and transactivation assays in NEMO-deficient cells. We also used immunoprecipitation assays, immunoblotting, and an in situ proximity ligation assay to characterize the truncated NEMO protein interactions with IKK-α, IKK-ß, TNF receptor-associated factor 6, TNF receptor-associated factor 2, receptor-interacting protein 1, Hemo-oxidized iron regulatory protein 2 ligase 1 (HOIL-1), HOIL-1-interacting protein, and SHANK-associated RH domain-interacting protein. Lastly, we assessed NEMO linear ubiquitination using immunoblotting and investigated the formation of NEMO-containing structures (using immunostaining and confocal microscopy) after cell stimulation with IL-1ß. RESULTS: We identified a novel splice mutation in IKBKG (c.518+2T>G, resulting in an in-frame deletion: p.DelQ134_R256). The mutant NEMO lacked part of the CC1 coiled-coil and HLX2 helical domain. The p.DelQ134_R256 mutation caused inhibition of NF-κB signaling, although the truncated NEMO protein interacted with proteins involved in activation of NF-κB signaling. The IL-1ß-induced formation of NEMO-containing structures was impaired in fibroblasts from patients with IP carrying the truncated NEMO form (as also observed in HOIL-1-/- cells). The truncated NEMO interaction with SHANK-associated RH domain-interacting protein was impaired in a male fetus with IP, leading to defective linear ubiquitination. CONCLUSION: We identified a hitherto unreported disease mechanism (defective linear ubiquitination) in patients with IP.


Asunto(s)
Fibroblastos/fisiología , Quinasa I-kappa B/metabolismo , Incontinencia Pigmentaria/metabolismo , Piel/patología , Ubiquitinas/metabolismo , Clonación Molecular , Femenino , Células HEK293 , Humanos , Quinasa I-kappa B/genética , Incontinencia Pigmentaria/genética , Masculino , Mutación/genética , FN-kappa B/metabolismo , Linaje , Unión Proteica , Transducción de Señal , Activación Transcripcional , Ubiquitinación
9.
Cell Death Dis ; 7(8): e2346, 2016 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-27560715

RESUMEN

Incontinentia Pigmenti (IP) is a rare X-linked disease characterized by early male lethality and multiple abnormalities in heterozygous females. IP is caused by NF-κB essential modulator (NEMO) mutations. The current mechanistic model suggests that NEMO functions as a crucial component mediating the recruitment of the IκB-kinase (IKK) complex to tumor necrosis factor receptor 1 (TNF-R1), thus allowing activation of the pro-survival NF-κB response. However, recent studies have suggested that gene activation and cell death inhibition are two independent activities of NEMO. Here we describe that cells expressing the IP-associated NEMO-A323P mutant had completely abrogated TNF-induced NF-κB activation, but retained partial antiapoptotic activity and exhibited high sensitivity to death by necroptosis. We found that robust caspase activation in NEMO-deficient cells is concomitant with RIPK3 recruitment to the apoptosis-mediating complex. In contrast, cells expressing the ubiquitin-binding mutant NEMO-A323P did not recruit RIPK3 to complex II, an event that prevented caspase activation. Hence NEMO, independently from NF-κB activation, represents per se a key component in the structural and functional dynamics of the different TNF-R1-induced complexes. Alteration of this process may result in differing cellular outcomes and, consequently, also pathological effects in IP patients with different NEMO mutations.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , Transducción de Señal , Factor de Necrosis Tumoral alfa/metabolismo , Animales , Caspasas/metabolismo , Muerte Celular , Activación Enzimática , Proteína de Dominio de Muerte Asociada a Fas/metabolismo , Técnicas de Inactivación de Genes , Quinasa I-kappa B/metabolismo , Ratones , Modelos Biológicos , Proteínas Mutantes/metabolismo , Fosforilación , Fosfoserina/metabolismo , Proteínas Quinasas/metabolismo
10.
J Cell Physiol ; 231(1): 152-61, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26060140

RESUMEN

NEMO/IKKγ is the regulatory subunit of the IκB Kinase (IKK) complex, required for the activation of the NF-κB pathway, which is involved in a variety of key processes, including immunity, inflammation, differentiation, and cell survival. Termination of NF-κB activity on specific -κB responsive genes, which is crucial for the resolution of inflammatory responses, can be achieved by direct degradation of the chromatin-bound NF-κB subunit RelA/p65, a process mediated by a protein complex that contains Copper Metabolism Murr1 Domain 1 (COMMD1). In this study, we identify COMMD7, another member of the COMMDs protein family, as a novel NEMO-interacting protein. We show that COMMD7 exerts an inhibitory effect on NF-κB activation upon TNFα stimulation. COMMD7 interacts with COMMD1 and together they cooperate to down-regulate NF-κB activity. Accordingly, termination of TNFα-induced NF-κB activity on the -κB responsive gene, Icam1, is defective in cells silenced for COMMD7 expression. Furthermore, this impairment is not greatly increased when we silence the expression of both COMMD7 and COMMD1 indicating that the two proteins participate in the same pathway of termination of TNFα-induced NF-κB activity. Importantly, we have demonstrated that COMMD7's binding to NEMO does not interfere with the binding to the IKKs, and that the disruption of the IKK complex through the use of the NBP competitor impairs the termination of NF-κB activity. We propose that an intact IKK complex is required for the termination of NF-κB-dependent transcription and that COMMD7 acts as a scaffold in the IKK-mediated NF-κB termination.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Diferenciación Celular/fisiología , Quinasa I-kappa B/metabolismo , FN-kappa B/metabolismo , Transducción de Señal , Diferenciación Celular/genética , Línea Celular , Supervivencia Celular/genética , Regulación de la Expresión Génica/fisiología , Humanos , Fosforilación
11.
Int Rev Immunol ; 34(6): 445-59, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26269396

RESUMEN

Anhidrotic Ectodermal Dysplasia with ImmunoDeficiency (EDA-ID, OMIM 300291) and Incontinentia Pigmenti (IP, OMIM 308300) are two rare diseases, caused by mutations of the IKBKG/NEMO gene. The protein NEMO/IKKγ is essential for the NF-κB activation pathway, involved in a variety of physiological and cellular processes, such as immunity, inflammation, cell proliferation, and survival. A wide spectrum of IKBKG/NEMO mutations have been identified so far, and, on the basis of their effect on NF-κB activation, they are considered hypomorphic or amorphic (loss of function) mutations. IKBKG/NEMO hypomorphic mutations, reducing but not abolishing NF-κB activation, have been identified in EDA-ID and IP patients. Instead, the amorphic mutations, abolishing NF-κB activation by complete IKBKG/NEMO gene silencing, cause only IP. Here, we present an overview of IKBKG/NEMO mutations in EDA-ID and IP patients and describe similarities and differences between the clinical/immunophenotypic and genetic aspects, highlighting any T and B lymphocyte defect, and paying particular attention to the cellular and molecular defects that underlie the pathogenesis of both diseases.


Asunto(s)
Displasia Ectodérmica/etiología , Displasia Ectodérmica/metabolismo , Enfermedades Genéticas Ligadas al Cromosoma X/etiología , Enfermedades Genéticas Ligadas al Cromosoma X/metabolismo , Quinasa I-kappa B/genética , Síndromes de Inmunodeficiencia/etiología , Síndromes de Inmunodeficiencia/metabolismo , Incontinencia Pigmentaria/etiología , Incontinencia Pigmentaria/metabolismo , Mutación , FN-kappa B/metabolismo , Transducción de Señal , Animales , Displasia Ectodérmica/diagnóstico , Estudios de Asociación Genética , Enfermedades Genéticas Ligadas al Cromosoma X/diagnóstico , Sitios Genéticos , Genotipo , Humanos , Quinasa I-kappa B/química , Quinasa I-kappa B/metabolismo , Síndromes de Inmunodeficiencia/diagnóstico , Incontinencia Pigmentaria/diagnóstico , Inflamación/genética , Inflamación/inmunología , Inflamación/metabolismo , Fenotipo , Enfermedades de Inmunodeficiencia Primaria
12.
Orphanet J Rare Dis ; 9: 93, 2014 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-24961275

RESUMEN

We report here on the building-up of a database of information related to 386 cases of Incontinentia Pigmenti collected in a thirteen-year activity (2000-2013) at our centre of expertise. The database has been constructed on the basis of a continuous collection of patients (27.6/year), the majority diagnosed as sporadic cases (75.6%). This activity has generated a rich source of information for future research studies by integrating molecular/clinical data with scientific knowledge. We describe the content, architecture and future utility of this collection of data on IP to offer comprehensive anonymous information to the international scientific community.


Asunto(s)
Incontinencia Pigmentaria/epidemiología , Estudios de Cohortes , Femenino , Humanos , Incontinencia Pigmentaria/genética , Incontinencia Pigmentaria/fisiopatología , Masculino
13.
Hum Mutat ; 35(2): 165-77, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24339369

RESUMEN

Incontinentia pigmenti (IP) is an X-linked-dominant Mendelian disorder caused by mutation in the IKBKG/NEMO gene, encoding for NEMO/IKKgamma, a regulatory protein of nuclear factor kappaB (NF-kB) signaling. In more than 80% of cases, IP is due to recurrent or nonrecurrent deletions causing loss-of-function (LoF) of NEMO/IKKgamma. We review how the local architecture of the IKBKG/NEMO locus with segmental duplication and a high frequency of repetitive elements favor de novo aberrant recombination through different mechanisms producing genomic microdeletion. We report here a new microindel (c.436_471delinsT, p.Val146X) arising through a DNA-replication-repair fork-stalling-and-template-switching and microhomology-mediated-end-joining mechanism in a sporadic IP case. The LoF mutations of IKBKG/NEMO leading to IP include small insertions/deletions (indel) causing frameshift and premature stop codons, which account for 10% of cases. We here present 21 point mutations previously unreported, which further extend the spectrum of pathologic variants: 14/21 predict LoF because of premature stop codon (6/14) or frameshift (8/14), whereas 7/21 predict a partial loss of NEMO/IKKgamma activity (two splicing and five missense). We review how the analysis of IP-associated IKBKG/NEMO hypomorphic mutants has contributed to the understanding of the pathophysiological mechanism of IP disease and has provided important information on affected NF-kB signaling. We built a locus-specific database listing all IKBKG/NEMO variants, accessible at http://IKBKG.lovd.nl.


Asunto(s)
Codón sin Sentido , Mutación del Sistema de Lectura , Quinasa I-kappa B/genética , Quinasa I-kappa B/metabolismo , Incontinencia Pigmentaria/genética , FN-kappa B/metabolismo , Animales , Secuencia de Bases , Cromosomas Humanos X , Variación Genética , Genotipo , Humanos , Incontinencia Pigmentaria/patología , Mutación Missense , FN-kappa B/genética , Fenotipo , Mutación Puntual , Eliminación de Secuencia , Transducción de Señal
15.
Hum Mol Genet ; 21(6): 1260-71, 2012 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-22121116

RESUMEN

IKBKG/NEMO gene mutations cause an X-linked, dominant neuroectodermal disorder named Incontinentia Pigmenti (IP). Located at Xq28, IKBKG/NEMO has a unique genomic organization, as it is part of a segmental duplication or low copy repeat (LCR1-LCR2, >99% identical) containing the gene and its pseudogene copy (IKBKGP). In the opposite direction and outside LCR1, IKBKG/NEMO partially overlaps G6PD, whose mutations cause a common X-linked human enzymopathy. The two LCRs in the IKBKG/NEMO locus are able to recombine through non-allelic homologous recombination producing either a pathological recurrent exon 4-10 IKBKG/NEMO deletion (IKBKGdel) or benign small copy number variations. We here report that the local high frequency of micro/macro-homologies, tandem repeats and repeat/repetitive sequences make the IKBKG/NEMO locus susceptible to novel pathological IP alterations. Indeed, we describe the first two independent instances of inter-locus gene conversion, occurring between the two LCRs, that copies the IKBKGP pseudogene variants into the functional IKBKG/NEMO, causing the de novo occurrence of p.Glu390ArgfsX61 and the IKBKGdel mutations, respectively. Subsequently, by investigating a group of 20 molecularly unsolved IP subjects using a high-density quantitative polymerase chain reaction assay, we have identified seven unique de novo deletions varying from 4.8 to ∼115 kb in length. Each deletion removes partially or completely both IKBKG/NEMO and the overlapping G6PD, thereby uncovering the first deletions disrupting the G6PD gene which were found in patients with IP. Interestingly, the 4.8 kb deletion removes the conserved bidirectional promoterB, shared by the two overlapping IKBKG/NEMO and G6PD genes, leaving intact the alternative IKBKG/NEMO unidirectional promoterA. This promoter, although active in the keratinocytes of the basal dermal layer, is down-regulated during late differentiation. Genomic analysis at the breakpoint sites indicated that other mutational forces, such as non-homologous end joining, Alu-Alu-mediated recombination and replication-based events, might enhance the vulnerability of the IP locus to produce de novo pathological IP alleles.


Asunto(s)
Genómica , Glucosafosfato Deshidrogenasa/genética , Quinasa I-kappa B/genética , Incontinencia Pigmentaria/genética , Incontinencia Pigmentaria/patología , Regiones Promotoras Genéticas/genética , Eliminación de Secuencia/genética , Alelos , Diferenciación Celular , Células Cultivadas , Femenino , Recombinación Homóloga , Humanos , Queratinocitos/citología , Queratinocitos/metabolismo , Masculino , Repeticiones de Microsatélite , Seudogenes/genética , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Secuencias Repetitivas de Ácidos Nucleicos/genética
16.
Hum Mol Genet ; 19(16): 3138-49, 2010 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-20529958

RESUMEN

NF-kappaB Essential MOdulator (NEMO) has been shown to play a critical role in NF-kappaB activation, as the regulatory subunit of IkappaB kinase. Upon cell stimulation, NEMO can be modified through phosphorylation, sumoylation or ubiquitination. In the latter case, not much is known regarding the exact function of this posttranslational modification. One of the E3 ligase responsible for K63-linked NEMO polyubiquitination is TRAF6, which participates in several signaling pathways controlling immunity, osteoclastogenesis, skin development and brain functions. We previously observed a potentially important interaction between NEMO and TRAF6. In this study, we defined in more detail the domains required for this interaction, uncovering a new binding site for TRAF6 located at the amino-terminus of NEMO and recognized by the coiled-coil domain of TRAF6. This site appears to work in concert with the previously identified NEMO ubiquitin-binding domain which binds polyubiquitinated chains, suggesting a dual mode of TRAF6 recognition. We also showed that E57K mutation of NEMO found in a mild form of the genetic disease incontinentia pigmenti, resulted in impaired TRAF6 binding and IL-1beta signaling. In contrast, activation of NF-kappaB by TNF-alpha was not affected. These data demonstrate that NEMO/TRAF6 interaction has physiological relevance and might represent a new target for therapeutic purposes.


Asunto(s)
Quinasa I-kappa B/genética , Incontinencia Pigmentaria/genética , Mutación , Factor 6 Asociado a Receptor de TNF/genética , Sustitución de Aminoácidos , Animales , Sitios de Unión/genética , Western Blotting , Línea Celular , Células Cultivadas , Embrión de Mamíferos/citología , Fibroblastos/citología , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Humanos , Quinasa I-kappa B/química , Quinasa I-kappa B/metabolismo , Inmunoprecipitación , Incontinencia Pigmentaria/metabolismo , Incontinencia Pigmentaria/patología , Interleucina-1beta/farmacología , Péptidos y Proteínas de Señalización Intracelular/química , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Ratones , Ratones Noqueados , Modelos Moleculares , Unión Proteica/efectos de los fármacos , Estructura Terciaria de Proteína , Factor 6 Asociado a Receptor de TNF/metabolismo
17.
Hum Mutat ; 30(9): 1284-91, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19603533

RESUMEN

The Incontinentia Pigmenti (IP) locus contains the IKBKG/NEMO/IKKgamma gene and its truncated pseudogene copy, IKBKGP/deltaNEMO. The major genetic defect in IP is a heterozygous exon4_10 IKBKG deletion (IKBKGdel) caused by a recombination between two consecutive MER67B repeats. We analyzed 91 IP females carrying the IKBKGdel, 59 of whom carrying de novo mutations (65%). In eight parents, we found two recurrent nonpathological variants of IP locus, which were also present as rare polymorphism in control population: the IKBKGPdel, corresponding to the exon4_10 deletion in the pseudogene, and the MER67Bdup, that replicates the exon4_10 region downstream of the normal IKBKG gene. Using quantitative DNA analysis and microsatellite mapping, we established that both variants might promote the generation of the pathological IKBKGdel. Indeed, in family IP-516, the exon4_10 deletion was repositioned in the same allele from the pseudogene to the gene, whereas in family IP-688, the MER67Bdup generated the pathological IKBKGdel by recombination between two direct nonadjacent MER67Bs. Moreover, we found an instance of somatic recombination in a MER67Bdup variant, creating the IKBKGdel in an IP male. Our data suggest that the IP locus undergoes recombination producing recurrent variants that might be "at risk" of generating de novo IKBKGdel by NAHR during either meiotic or mitotic division.


Asunto(s)
Cromosomas Humanos X/genética , Exones/genética , Duplicación de Gen , Quinasa I-kappa B/genética , Incontinencia Pigmentaria/genética , Eliminación de Secuencia , Secuencia de Bases , Familia , Femenino , Humanos , Quinasa I-kappa B/metabolismo , Incontinencia Pigmentaria/metabolismo , Masculino , Modelos Genéticos , Datos de Secuencia Molecular , Linaje
18.
Hum Mutat ; 29(5): 595-604, 2008 May.
Artículo en Inglés | MEDLINE | ID: mdl-18350553

RESUMEN

Mutations in the inhibitor of kappa light polypeptide gene enhancer in B-cells, kinase gamma (IKBKG), also called nuclear factor-kappaB (NF-kB) essential modulator (NEMO), gene are the most common single cause of incontinentia pigmenti (IP) in females and anhydrotic ectodermal dysplasia with immunodeficiency (EDA-ID) in males. The IKBKG gene, located in the Xq28 chromosomal region, encodes for the regulatory subunit of the inhibitor of kappaB (IkB) kinase (IKK) complex required for the activation of the NF-kB pathway. Therefore, the remarkably heterogeneous and often severe clinical presentation reported in IP is due to the pleiotropic role of this signaling transcription pathway. A recurrent exon 4_10 genomic rearrangement in the IKBKG gene accounts for 60 to 80% of IP-causing mutations. Besides the IKBKG rearrangement found in IP females (which is lethal in males), a total of 69 different small mutations (missense, frameshift, nonsense, and splice-site mutations) have been reported, including 13 novel ones in this work. The updated distribution of all the IP- and EDA-ID-causing mutations along the IKBKG gene highlights a secondary hotspot mutation in exon 10, which contains only 11% of the protein. Furthermore, familial inheritance analysis revealed an unexpectedly high incidence of sporadic cases (>65%). The sum of the observations can aid both in determining the molecular basis of IP and EDA-ID allelic diseases, and in genetic counseling in affected families.


Asunto(s)
Quinasa I-kappa B/genética , Mutación , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Cromosomas Humanos X , ADN , Displasia Ectodérmica/genética , Femenino , Humanos , Quinasa I-kappa B/química , Incontinencia Pigmentaria/genética , Masculino , Ratones , Datos de Secuencia Molecular , Mosaicismo , Homología de Secuencia de Aminoácido
19.
Hum Mol Genet ; 16(23): 2805-15, 2007 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-17728323

RESUMEN

The regulatory subunit NEMO is involved in the mechanism of activation of IkappaB kinase (IKK), the kinase complex that controls the NF-kappaB signaling pathway. During this process, NEMO is modified post-translationally through K63-linked polyubiquitination. We report the molecular characterization of a new missense mutation of NEMO (A323P) which causes a severe form of incontinentia pigmenti (OMIM#308300), an inherited disease characterized predominantly by skin inflammation. The A323P mutation was found to impair TNF-, IL-1-, LPS- and PMA/ionomycin-induced NF-kappaB activation, as well as to disrupt TRAF6-dependent NEMO polyubiquitination, due to a defective NEMO/TRAF6 interaction. Mutagenesis identified the affected ubiquitination sites as three lysine residues located in the vicinity of A323. Unexpectedly, these lysines were ubiquitinated together with two previously identified lysines not connected to TRAF6. Mutation of all these ubiquitination sites severely impaired NF-kappaB activation induced by stimulation with IL-1, LPS, Nod2/RICK or serum/LPA. In contrast, mutation at all of these sites had only a limited effect on stimulation by TNF. These findings indicate that post-translational modification of NEMO through K63-linked polyubiquitination is a key event in IKK activation and that perturbation of this step may cause human pathophysiology.


Asunto(s)
Quinasa I-kappa B/genética , Quinasa I-kappa B/metabolismo , Incontinencia Pigmentaria/genética , Incontinencia Pigmentaria/metabolismo , Mutación Missense , Factor 6 Asociado a Receptor de TNF/metabolismo , Animales , Células Cultivadas , Niño , ADN/genética , Femenino , Humanos , Quinasa I-kappa B/química , Masculino , Ratones , FN-kappa B/metabolismo , Linaje , Fenotipo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transducción de Señal , Transfección , Ubiquitinación/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...