Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Chemosphere ; 279: 130477, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33857648

RESUMEN

This work investigates the occurrence of OCPs, such as hexachlorocyclohexane (α-, ß-, γ- and δ-HCH) isomers, dichlorodiphenyltrichloroethane (p,p'-DDT) and its metabolite dichlorodiphenyldichloroethylene (p,p'-DDE), endosulfan (α- and ß-EDS) isomers, chlorpyrifos (CPF), dacthal (DAC) and phenolic compounds, such as 4-nonylphenol (4-NP) and its precursors nonylphenol polyethoxylates (NP1EO and NP2EO) and bisphenol A (BPA), in polar cod sampled in and outside Bessel Fjord (NE Greenland). Linear regressions between target contaminants and morphological parameters (age, length, weight, gonad- and hepato-somatic indices and Fulton K) have been also evaluated. Polar cod collected at shelf had higher average concentrations of BPA, NP1EO, NP2EO and 4-NP (muscle: 6.2, 13.2, 8.9 and 1.9 ng/g w.w., respectively; liver: 5.8, 7.5, 5.2 and 0.9 ng/g w.w. respectively), than fjord's specimens (muscle: 3.5, 9.1, 3.9 and 1.0 ng/g w.w., respectively; liver: 2.4, 5.3, 2.9 and 1.1 ng/g w.w. respectively). ΣHCHs, ΣEDSs, ΣDDTs, CPF and DAC, were more accumulated in the polar cod from the fjord (average amount in muscle: 9.1, 4.8, 7.9, 3.8 and 2.8 ng/g w.w., respectively; average amount in the liver: 11.2, 9.0, 3.8, 5.9 and 4.9 ng/g w.w., respectively) than shelf's ones (average amount in muscle 3.9, 4.5, 4.2, 0.9 and 1.2 ng/g w.w., respectively; average amount in liver 7.8, 6.3, 2.1, 3.4 and 2.5 ng/g w.w., respectively). The comparison between the concentration of target contaminants and morphologic parameters suggested a different exposure of polar cod occupying the fjord and shelf habitats, due to a combination of genetic and dietary differences, climate change effects and increased human activities.


Asunto(s)
Contaminantes Ambientales , Hidrocarburos Clorados , DDT/análisis , Monitoreo del Ambiente , Contaminantes Ambientales/análisis , Estuarios , Groenlandia , Hexaclorociclohexano/análisis , Humanos , Hidrocarburos Clorados/análisis
2.
J Hazard Mater ; 378: 120769, 2019 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-31216500

RESUMEN

The application of anaerobically digested cattle manure on agricultural land for both improving its quality and recycling a farm waste is an increasingly frequent practice in line with the circular economy. However, knowledge on the potential risk of spreading antibiotic resistance through this specific practice is quite scarce. The antibiotic sulfamethoxazole (SMX) is one of the most heavily prescribed in veterinary medicine. In this study, SMX dissipation and the possible effects on natural microorganisms were investigated in a soil amended with an anaerobically digested cattle manure produced from a biogas plant inside a livestock farm. Microcosm experiments were performed using amended soil treated with SMX (20 mg/kg soil). During the experimental time (61 days), soil samples were analysed for SMX and N4-acetylsulfamethoxazole, microbial abundance, activity and structure. Furthermore, the prevalence of the intI1 gene was also determined. The overall results showed that, although there was an initial negative effect on microbial abundance, SMX halved in about 7 days in the digestate-amended soil. The intI1 gene found in both the digestate and amended soil suggested that the use of anaerobically digested cattle manure as fertilizer can be a source of antibiotic resistant bacteria (ARBs) and genes (ARGs) in agroecosystems.


Asunto(s)
Antibacterianos/química , Estiércol , Contaminantes del Suelo/química , Sulfametoxazol/química , Agricultura/métodos , Anaerobiosis , Animales , Bacterias/genética , Biocombustibles , Bovinos , Farmacorresistencia Microbiana/genética , Ésteres , Ácidos Grasos , Fertilizantes/análisis , Genes Bacterianos , Microbiota , Suelo/química , Microbiología del Suelo
3.
J Hazard Mater ; 365: 538-545, 2019 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-30469033

RESUMEN

The anionic surfactant sodium lauryl ether sulphate (SLES) is the main component in most foaming agents used for mechanized tunneling excavation. The process produces huge amounts of soil debris that can have a potential impact on ecosystems. The lack of accurate information about SLES persistence in excavated soil has aroused increasing concern about how it is recycled. The objective of this study was to assess SLES biodegradability in two commercial foaming agents (P1 and P2). Microcosm experiments were performed with two different soils collected from a tunnel construction site and conditioned with P1 or P2 (85.0 or 83.0 mg kg -1 of SLES, respectively). At selected times soil samples were collected for assessing the SLES residual concentration using Pressured Liquid Extraction followed by methylene blue active substance analysis (MBAS). Simultaneously, soil microbial abundance (DAPI counts), viability (Live/Dead method), activity (dehydrogenase analysis) and phylogenetic structure (Fluorescent In Situ Hybridization) were evaluated. SLES halved faster in the silty-clay soil (6 d) than in the gravel in a clay-silty-sand matrix (8-9 days). At day 28 it was degraded in both soils. Its biodegradation was ascribed to the significant increase in Gamma-Proteobacteria. At this time, the spoil material can be considered as a by-product.


Asunto(s)
Biodegradación Ambiental , Gammaproteobacteria/metabolismo , Dodecil Sulfato de Sodio/metabolismo , Tensoactivos/metabolismo , Éteres/química , Gammaproteobacteria/genética , Dodecil Sulfato de Sodio/química , Microbiología del Suelo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA