Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Toxicol In Vitro ; 72: 105097, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33476716

RESUMEN

Bisphenol A (BPA) is a chemical used in the manufacturing of plastics to which human exposure is ubiquitous. Numerous studies have linked BPA exposure to many adverse health outcomes prompting the replacement of BPA with various analogues including bisphenol-F (BPF) and bisphenol S (BPS). Other bisphenols are used in various consumer applications, such as 3,3',5,5'-Tetrabromobisphenol A (TBBPA), which is used as a flame retardant. Few studies to date have examined the effects of BPA and its analogues in stem cells to explore potential developmental impacts. Here we used transcriptomics to investigate similarities and differences of BPA and three of its analogues in the estrogen receptor negative, human embryonic stem cell line H9 (WA09). H9 cells were exposed to increasing concentrations of the bisphenols and analyzed using RNA-sequencing. Our data indicate that BPA, BPF, and BPS have similar potencies in inducing transcriptional changes and perturb many of the same pathways. TBBPA, the least structurally similar bisphenol of the group, exhibited much lower potency. All bisphenols robustly impacted gene expression in these cells, albeit at concentrations well above those observed in estrogen-positive cells. Overall, we provide a foundational data set against which to explore the transcriptional similarities of other bisphenols in embryonic stem cells, which may be used to assess the suitability of chemical grouping for read-across and for preliminary potency evaluation.


Asunto(s)
Compuestos de Bencidrilo/toxicidad , Disruptores Endocrinos/toxicidad , Células Madre Embrionarias Humanas/efectos de los fármacos , Fenoles/toxicidad , Bifenilos Polibrominados/toxicidad , Sulfonas/toxicidad , Transcriptoma/efectos de los fármacos , Línea Celular , Relación Dosis-Respuesta a Droga , Humanos , RNA-Seq , Medición de Riesgo
2.
Environ Health Perspect ; 128(10): 107002, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-33026256

RESUMEN

BACKGROUND: Exposure to coplanar polychlorinated biphenyls (PCBs) is linked to the development of insulin resistance. Previous studies suggested PCB126 alters muscle mitochondrial function through an indirect mechanism. Given that PCBs are stored in fat, we hypothesized that PCB126 alters adipokine secretion, which in turn affects muscle metabolism. OBJECTIVES: We determined a) the impacts of PCB126 exposure on adipocyte cytokine/adipokine secretion in vitro; b) whether adipocyte-derived factors alter glucose metabolism and mitochondrial function in myotubes when exposed to PCB126; and c) whether preestablished insulin resistance alters the metabolic responses of adipocytes exposed to PCB126 and the communication between adipocytes and myotubes. METHODS: 3T3-L1 adipocytes were exposed to PCB126 (1-100 nM) in two insulin sensitivity conditions [insulin sensitive (IS) and insulin resistant (IR) adipocytes], followed by the measurement of secreted adipokines, mitochondrial function, and insulin-stimulated glucose uptake. Communication between adipocytes and myotubes was reproduced by exposing C2C12 myotubes or mouse primary myotubes to conditioned medium (CM) derived from IS or IR 3T3-L1 adipocytes exposed to PCB126. Mitochondrial function and insulin-stimulated glucose uptake were then determined in myotubes. RESULTS: IR 3T3-L1 adipocytes treated with PCB126 had significantly higher adipokine (adiponectin, IL-6, MCP-1, TNF-α) secretion and lower mitochondrial function, glucose uptake, and glycolysis. However, PCB126 did not significantly alter these parameters in IS adipocytes. Altered energy metabolism in IR 3T3-L1 adipocytes was linked to lower phosphorylation of AMP-activated protein kinase (p-AMPK) and higher superoxide dismutase 2 levels, an enzyme involved in reactive oxygen species detoxification. Myotubes exposed to the CM from PCB126-treated IR adipocytes had lower glucose uptake, with no alteration in glycolysis or mitochondrial function. Interestingly, p-AMPK levels were higher in myotubes exposed to the CM of PCB126-treated IR adipocytes. DISCUSSION: Taken together, these data suggest that increased adipokine secretion from IR adipocytes exposed to PCB126 might explain impaired glucose uptake in myotubes. https://doi.org/10.1289/EHP7058.


Asunto(s)
Tejido Adiposo/fisiología , Sustancias Peligrosas/toxicidad , Músculos/fisiología , Bifenilos Policlorados/toxicidad , Células 3T3-L1 , Adipocitos , Adiponectina , Animales , Comunicación , Metabolismo Energético , Insulina , Resistencia a la Insulina , Ratones , Mitocondrias , Fibras Musculares Esqueléticas , Fosforilación , Transducción de Señal/efectos de los fármacos , Pruebas de Toxicidad/métodos
3.
Endocrinology ; 161(8)2020 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-32556108

RESUMEN

The prevalence of type 2 diabetes (T2D) continues to increase worldwide. It is well established that genetic susceptibility, obesity, overnutrition and a sedentary life style are risk factors for the development of T2D. However, more recently, studies have also proposed links between exposure to endocrine-disrupting chemicals (EDCs) and altered glucose metabolism. Human exposure to environmental pollutants that are suspected to have endocrine disruptor activity is ubiquitous. One such chemical is Dechlorane Plus (DP), a flame retardant, that is now detected in humans and the environment. Here we show that exposure of mice to low, environmentally relevant doses of DP promoted glucose intolerance in mice fed a high-fat diet independent of weight gain. Furthermore, DP had pronounced effects on the adipose tissue, where it induced the development of hypertrophied white adipose tissue (WAT), and increased serum levels of resistin, leptin, and plasminogen activator inhibitor-1. In addition, DP exposure induced "whitening" of brown adipose tissue (BAT), and reduced BAT uncoupling protein 1 expression. Importantly, some of these effects occurred even when the mice were fed a regular, low-fat, diet. Finally, WAT adipogenic markers were reduced with DP treatment in the WAT. We also show that DP directly inhibited insulin signaling in murine adipocytes and human primary subcutaneous adipocytes in vitro. Taken together, our results show that the exposure to low and environmentally relevant levels of DP may contribute to the development of T2D.


Asunto(s)
Tejido Adiposo Blanco/efectos de los fármacos , Disruptores Endocrinos/farmacología , Intolerancia a la Glucosa/inducido químicamente , Hidrocarburos Clorados/farmacología , Trastornos del Metabolismo de los Lípidos/inducido químicamente , Compuestos Policíclicos/farmacología , Células 3T3-L1 , Tejido Adiposo Blanco/metabolismo , Tejido Adiposo Blanco/fisiopatología , Adulto , Anciano , Animales , Células Cultivadas , Relación Dosis-Respuesta a Droga , Femenino , Intolerancia a la Glucosa/metabolismo , Intolerancia a la Glucosa/patología , Humanos , Metabolismo de los Lípidos/efectos de los fármacos , Trastornos del Metabolismo de los Lípidos/metabolismo , Trastornos del Metabolismo de los Lípidos/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad , Embarazo
4.
Endocrinology ; 161(6)2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32170302

RESUMEN

Exposure to endocrine-disrupting chemicals (EDCs) is associated with adverse health outcomes including obesity and diabetes. Obesity, and more specifically visceral obesity, is correlated with metabolic disease. The adipose tissue is an endocrine organ and a potential target for many environmental pollutants including bisphenols. The subcutaneous (Sc) and the omental (Om, visceral) depots are composed of mature adipocytes and residing progenitors, which may be different between the depots and may be EDCs targets. Bisphenol A (BPA) is a suspected metabolic disruptor, and is being replaced with structurally similar compounds such as bisphenol S (BPS). Like BPA, BPS induces adipogenesis in murine and primary human Sc preadipocytes. However, the effect of BPS on Om preadipocytes is not known. In this study, we show that human primary progenitors from Om depots have a distinct transcriptomic signature as compared to progenitors derived from donor-matched Sc depots. Furthermore, we show that BPS increases adipogenesis both of Om and Sc preadipocytes and can mimic the action of glucocorticoids or peroxisome proliferator-activated receptor γ (PPARγ) agonists. We also show that BPS treatment, at 0.1 µM and 25 µM, modifies the adipokine profiles both of Om- and Sc-derived adipocytes in a depot-specific manner. Taken together our data show distinct gene expression profiles in the Om vs Sc progenitors and similar responses to the BPA analogue, BPS.


Asunto(s)
Adipocitos/efectos de los fármacos , Disruptores Endocrinos/toxicidad , Fenoles/toxicidad , Sulfonas/toxicidad , Adipocitos/citología , Adipocitos/metabolismo , Adipogénesis/efectos de los fármacos , Adulto , Anciano , Animales , Células Cultivadas , Femenino , Humanos , Grasa Intraabdominal/citología , Grasa Intraabdominal/efectos de los fármacos , Grasa Intraabdominal/metabolismo , Masculino , Ratones , Persona de Mediana Edad , PPAR gamma/genética , PPAR gamma/metabolismo , Células Madre/citología , Células Madre/efectos de los fármacos , Células Madre/metabolismo , Grasa Subcutánea/citología , Grasa Subcutánea/efectos de los fármacos , Grasa Subcutánea/metabolismo
5.
Int J Obes (Lond) ; 43(3): 545-555, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-29717277

RESUMEN

BACKGROUND/OBJECTIVES: Polybrominated diphenyl ethers (PBDEs) are chemicals that were added to consumer products to reduce flammability but were deemed toxic and bioaccumulative and were phased out of commerce. Flame retardants (FRs) such as Dechlorane Plus (DP) were introduced as replacements. DP is being produced in high volumes and is detected in the environment, human milk, and human serum. Although human exposure to DP is evident, little is known about its potential effects on human health. We and others have shown that some FRs are potential obesogens, i.e., promote adipogenesis. However, the effects of DP on adipogenesis are not known. METHODS: Murine 3T3-L1 and human primary subcutaneous (Sc) and omental (Om) preadipocytes were differentiated in the presence of DP (0.001-10 µM) and adipogenic effects were measured. Further, the ability of DP to activate the adipogenic transcription factor peroxisome proliferator-activated receptor γ (PPARγ) was also assessed. RESULTS: We show that treatment of murine preadipocytes with DP significantly (p < 0.05) increased lipid accumulation (2.5-fold) and the mRNA expression of adipogenic markers: fatty acid binding protein 4 (Fabp4), lipoprotein lipase (Lpl), perilipin (Plin), adipsin, and adiponectin. DP also significantly (p < 0.05) increased the protein levels of selected mature adipocyte markers. We further show using luciferase reporter assays that DP increased PPARγ transcriptional activity by threefold (p < 0.05). When the PPARγ agonist was replaced by DP in the human preadipocyte differentiation cocktail, DP significantly (p < 0.05) increased the mRNA levels of adipogenic markers, PPARγ, FABP4, and PLIN in human Sc as well as Om cultures. Finally, PPARγ antagonist studies revealed that DP-mediated upregulation of adipogenic markers Fabp4 and Lpl did not occur via PPARγ activation. CONCLUSION: The current study shows that DP can induce adipogenesis of murine and human preadipocytes. We show that, although DP can directly activate PPARγ, its adipogenic effects may be mediated via other pathways.


Asunto(s)
Adipocitos/efectos de los fármacos , Adipogénesis/efectos de los fármacos , Hidrocarburos Clorados/toxicidad , PPAR gamma/metabolismo , Compuestos Policíclicos/toxicidad , Células 3T3-L1 , Adipocitos/metabolismo , Adulto , Anciano , Animales , Células Cultivadas , Femenino , Humanos , Metabolismo de los Lípidos/efectos de los fármacos , Lípidos/análisis , Masculino , Ratones , Persona de Mediana Edad
6.
Environ Sci Pollut Res Int ; 26(3): 2375-2386, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30467749

RESUMEN

In the past few years, polychlorinated biphenyls (PCBs), a class of environmental pollutants, have been associated with metabolism dysregulation. Muscle is one of the key regulators of metabolism because of its mass and its important role in terms of glucose consumption and glucose storage. It has been shown that muscle alterations, such as oxidative stress and mitochondrial dysfunction, contribute significantly to the development of metabolic diseases. No study has yet investigated the toxicological effect of PCBs on muscle mitochondrial function and oxidative stress in vivo. The aim of this study was to assess the effect of PCB126 in vivo exposure (single dose of 1.05 µmol/kg) on muscle mitochondrial function and oxidative stress in rats. PCB126-treated rats showed a marked increase in Cyp1a1 mRNA levels in skeletal muscles in association with a 40% reduction in state 3 oxygen consumption rate measured with complex I substrates in permeabilized muscle fibers. Furthermore, PCB126 exposure altered the expression of some enzymes involved in ROS detoxification such as catalase and glutaredoxin 2. Our results highlight for the first time a toxic effect of coplanar PCBs on skeletal muscle mitochondrial function and oxidative stress. This suggests that acute PCB exposure, by affecting muscle metabolism, could contribute to the development of metabolic disorders. Studies are needed to determine if lower-level but longer-term PCB exposure exhibits the same effect.


Asunto(s)
Mitocondrias Musculares/efectos de los fármacos , Músculo Esquelético/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Bifenilos Policlorados/toxicidad , Animales , Catalasa/genética , Catalasa/metabolismo , Citocromo P-450 CYP1A1/genética , Citocromo P-450 CYP1A1/metabolismo , Contaminantes Ambientales/toxicidad , Femenino , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Glutarredoxinas/genética , Glutarredoxinas/metabolismo , Inactivación Metabólica/efectos de los fármacos , Inactivación Metabólica/genética , Mitocondrias Musculares/metabolismo , Fibras Musculares Esqueléticas/efectos de los fármacos , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Oxígeno/metabolismo , Ratas Sprague-Dawley
7.
Can J Diabetes ; 43(3): 215-220, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30551936

RESUMEN

OBJECTIVES: Obesity and type 2 diabetes often coexist. The effect of hyperglycemia on adipose tissue is, therefore, of interest. Although studies have shown that high glucose (HG) concentrations do not inhibit adipocyte differentiation, the resulting adipocyte phenotype has not been investigated. In particular, the levels of the glucose-responsive transcription factor carbohydrate-responsive response element binding protein (ChREBP) isoforms have not been assessed. METHODS: Human preadipocytes were differentiated into adipocytes in either normal glucose (NG) or HG conditions. RNA and protein analyses were used to measure the expression of ChREBP isoforms, thioredoxin interacting protein (TXNIP) and lipogenic genes. Insulin-stimulated glucose uptake was measured. RESULTS: HG- vs. NG-differentiated adipocytes expressed more ChREBPß and more TXNIP at the mRNA and protein levels. There was no change in lipogenic gene expression. HG- vs. NG-differentiated adipocytes displayed an inhibition of insulin-stimulated glucose uptake. CONCLUSIONS: HG-differentiated human adipocytes have distinct molecular differences and are insulin resistant. More studies are warranted to investigate potential mechanisms linking changes in ChREBPß and TXNIP to insulin responsiveness.


Asunto(s)
Adipocitos/metabolismo , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Proteínas Portadoras/metabolismo , Glucosa/metabolismo , Resistencia a la Insulina , Adipocitos/citología , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Glucemia , Proteínas Portadoras/genética , Diferenciación Celular , Células Cultivadas , Humanos , Fenotipo , Regulación hacia Arriba
8.
Sci Rep ; 8(1): 1264, 2018 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-29352275

RESUMEN

Dexamethasone is a synthetic glucocorticoid that is widely used as an adipogenic inducer in both murine and human in vitro models. Glucocorticoids have been shown to regulate early transcriptional events in adipogenesis. MicroRNAs (miRNAs) have been also implicated in the regulation of preadipocyte differentiation; however, the effects of glucocorticoids on miRNA expression levels during this process have not been studied. In this study we investigated the effects of glucocorticoids on the expression levels of miR-155 in differentiating 3T3-L1 preadipocytes. We found that miR-155 levels were up-regulated (2.4-fold) by glucocorticoids in differentiating 3T3-L1 preadipocytes, and this enhancement was abolished in the presence of RU486, a glucocorticoid receptor antagonist. In contrast, treatment with rosiglitazone, another adipogenic inducer decreased the expression levels of miR-155 in these cells. Further, our data show that endogenous miR-155 is unlikely to be involved in adipogenesis as we show that both dexamethasone and rosiglitazone induced adipogenesis to similar levels. Furthermore, using miR-155 inhibitor, we showed that the dexamethasone mediated miR-155 enhancement did not alter adipogenesis. Our data show that dexamethasone but not rosiglitazone increases miR-155 expression and that the increased expression of miR-155 is not involved in the dexamethasone-mediated adipogenesis in the 3T3-L1 model.


Asunto(s)
Adipocitos/efectos de los fármacos , Adipogénesis , Dexametasona/farmacología , Glucocorticoides/farmacología , MicroARNs/genética , Células 3T3 , Adipocitos/citología , Adipocitos/metabolismo , Animales , Ratones , MicroARNs/metabolismo , Mifepristona/farmacología , Rosiglitazona/farmacología , Regulación hacia Arriba
9.
Environ Health Perspect ; 125(9): 097013, 2017 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-28934090

RESUMEN

BACKGROUND: Exposure to flame retardants has been associated with negative health outcomes including metabolic effects. As polybrominated diphenyl ether flame retardants were pulled from commerce, human exposure to new flame retardants such as Firemaster® 550 (FM550) has increased. Although previous studies in murine systems have shown that FM550 and its main components increase adipogenesis, the effects of FM550 in human models have not been elucidated. OBJECTIVES: The objectives of this study were to determine if FM550 and its components are active in human preadipocytes, and to further investigate their mode of action. METHODS: Human primary preadipocytes were differentiated in the presence of FM550 and its components. Differentiation was assessed by lipid accumulation and expression of peroxisome proliferator-activated receptor γ (PPARG), fatty acid binding protein (FABP) 4 and lipoprotein lipase (LPL). mRNA was collected for Poly (A) RNA sequencing and was used to identify differentially expressed genes (DEGs). Functional analysis of DEGs was undertaken in Ingenuity Pathway Analysis. RESULTS: FM550 triphenyl phosphate (TPP) and isopropylated triphenyl phosphates (IPTP), increased adipogenesis in human primary preadipocytes as assessed by lipid accumulation and mRNA expression of regulators of adipogenesis such as PPARγ, CCAAT enhancer binding protein (C/EBP) α and sterol regulatory element binding protein (SREBP) 1 as well as the adipogenic markers FABP4 LPL and perilipin. Poly (A) RNA sequencing analysis revealed potential modes of action including liver X receptor/retinoid X receptor (LXR/RXR) activation, thyroid receptor (TR)/RXR, protein kinase A, and nuclear receptor subfamily 1 group H members activation. CONCLUSIONS: We found that FM550, and two of its components, induced adipogenesis in human primary preadipocytes. Further, using global gene expression analysis we showed that both TPP and IPTP likely exert their effects through PPARG to induce adipogenesis. In addition, IPTP perturbed signaling pathways that were not affected by TPP. https://doi.org/10.1289/EHP1318.


Asunto(s)
Adipocitos/efectos de los fármacos , Retardadores de Llama/toxicidad , Pruebas de Toxicidad , Células 3T3-L1 , Adipogénesis , Animales , Perfilación de la Expresión Génica , Humanos , Ratones
10.
PLoS One ; 12(4): e0175855, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28437481

RESUMEN

Firemaster® 550 (FM550) is a chemical mixture currently used as an additive flame retardant in commercial products, and is comprised of 2-ethylhexyl-2,3,4,5-tertrabromobenzoate (TBB), bis(2-ethylhexyl) tetrabromophthalate (TBPH), triphenyl phosphate (TPP), and isopropylated triphenyl phosphate (IPTP). Animal and in vitro studies suggest that FM550, TPP and IPTP may have adipogenic effects and may exert these effects through PPARγ activation. Using murine 3T3-L1 preadipocytes, we investigated the detailed expression of transcription factors and adipogenic markers in response to FM550 and its components. Further we investigated the mechanism of action of the peroxisome proliferator-activated receptor gamma (PPARγ) on downstream targets of the receptor by focussing on the mature adipocyte marker, adipocyte protein 2 (aP2). In addition, we set to elucidate the components responsible for the adipogenic effects seen in the FM550 mixture. We show that FM550 and its components TPP, IPTP, and TBPH, but not TBB induced lipid accumulation in a dose-dependent manner. Interestingly, despite displaying enhanced lipid accumulation, TBPH did not alter the mRNA or protein expression of terminal differentiation markers. In contrast, FM550, TPP, and IPTP treatment enhanced lipid accumulation, and mRNA and protein expression of terminal differentiation markers. To further delineate the mechanisms of action of FM550 and its components we focussed on aP2 promoter activity. For this purpose we used the enhancer region of the mouse aP2 promoter using a 584-bp reporter construct containing an active PPRE located 5.4 kb away from the transcription start site of aP2. Exposure to FM550, IPTP, and TPP significantly increased PPARγ mediated aP2 enhancer activity. Furthermore, we show that TPP- and IPTP-dependent upregulation of aP2 was significantly inhibited by the selective PPARγ antagonist GW9662. In addition, chromatin immunoprecipitation experiments showed that IPTP and TPP treatment led to the recruitment of PPARγ to the regulatory region of aP2.


Asunto(s)
Adipocitos/efectos de los fármacos , Adipogénesis/efectos de los fármacos , Proteínas de Unión a Ácidos Grasos/genética , Organofosfatos/farmacología , PPAR gamma/genética , Bifenilos Polibrominados/farmacología , Activación Transcripcional/efectos de los fármacos , Células 3T3-L1 , Adipocitos/metabolismo , Animales , Relación Dosis-Respuesta a Droga , Proteínas de Unión a Ácidos Grasos/metabolismo , Ratones , PPAR gamma/metabolismo , Regiones Promotoras Genéticas/efectos de los fármacos , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
11.
Can J Diabetes ; 40(5): 411-418, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27157387

RESUMEN

OBJECTIVES: Adipose tissue expands via differentiation of preadipocytes into adipocytes (adipogenesis) and/or hypertrophy of existing adipocytes. A low adipogenic capacity promotes adipocyte hypertrophy, causing inflammatory macrophage accumulation and insulin resistance. Macrophage-conditioned medium (MacCM) inhibits adipogenesis and promotes adipocyte inflammation, but it is unknown whether these effects are altered by high glucose (HG) versus normal glucose (NG) concentrations. Our aim was to compare the effect of HG-MacCM versus NG-MacCM on human adipogenesis and adipocyte inflammation. METHODS: Human monocyte-derived macrophages (MDMs) were placed in 5 mmol/L (NG) or 25 mmol/L (HG) glucose for 24 hours. MacCM was collected and its effect on differentiation of human subcutaneous abdominal preadipocytes and adipocyte inflammation was evaluated. RESULTS: HG-MacCM, but not NG-MacCM, inhibited triacylglycerol (TG) accumulation and protein expression of peroxisome proliferator-activated receptor γ (PPARgamma) during human adipogenesis. Preadipocytes differentiated in HG-MacCM displayed a more pro-inflammatory phenotype, as assessed by increased interleukin-6 and monocyte chemotactic protein-1 (MCP-1), as well as reduced adiponectin mRNA expression. In MDMs, HG increased phosphorylation of inhibitor of kappaB kinase (IKK)-beta and decreased protein expression of inhibitor of kappaB alpha. HG also reduced protein expression of PPARgamma in MDMs. However, no MDM changes in mRNA expression of MCP-1, interleukin-1beta or tumor necrosis factor-alpha were detected. The stimulatory effect of HG-MacCM on MCP-1 expression in adipocytes was partially inhibited when MDMs were treated with sc-514 (IKKbeta inhibitor). CONCLUSIONS: High glucose concentration accentuates the anti-adipogenic and pro-inflammatory effects of MacCM on human preadipocytes.


Asunto(s)
Adipocitos/efectos de los fármacos , Adipogénesis/efectos de los fármacos , Glucosa/farmacología , Adipocitos/citología , Adipocitos/metabolismo , Adipogénesis/inmunología , Adulto , Diferenciación Celular/efectos de los fármacos , Células Cultivadas , Medios de Cultivo Condicionados , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Glucosa/metabolismo , Humanos , Macrófagos/fisiología , Masculino , Persona de Mediana Edad
12.
BMC Biol ; 7: 67, 2009 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-19814781

RESUMEN

BACKGROUND: Understanding stem cell differentiation is essential for the future design of cell therapies. While retinoic acid (RA) is the most potent small molecule enhancer of skeletal myogenesis in stem cells, the stage and mechanism of its function has not yet been elucidated. Further, the intersection of RA with other signalling pathways that stimulate or inhibit myogenesis (such as Wnt and BMP4, respectively) is unknown. Thus, the purpose of this study is to examine the molecular mechanisms by which RA enhances skeletal myogenesis and interacts with Wnt and BMP4 signalling during P19 or mouse embryonic stem (ES) cell differentiation. RESULTS: Treatment of P19 or mouse ES cells with low levels of RA led to an enhancement of skeletal myogenesis by upregulating the expression of the mesodermal marker, Wnt3a, the skeletal muscle progenitor factors Pax3 and Meox1, and the myogenic regulatory factors (MRFs) MyoD and myogenin. By chromatin immunoprecipitation, RA receptors (RARs) bound directly to regulatory regions in the Wnt3a, Pax3, and Meox1 genes and RA activated a beta-catenin-responsive promoter in aggregated P19 cells. In the presence of a dominant negative beta-catenin/engrailed repressor fusion protein, RA could not bypass the inhibition of skeletal myogenesis nor upregulate Meox1 or MyoD. Thus, RA functions both upstream and downstream of Wnt signalling. In contrast, it functions downstream of BMP4, as it abrogates BMP4 inhibition of myogenesis and Meox1, Pax3, and MyoD expression. Furthermore, RA downregulated BMP4 expression and upregulated the BMP4 inhibitor, Tob1. Finally, RA inhibited cardiomyogenesis but not in the presence of BMP4. CONCLUSION: RA can enhance skeletal myogenesis in stem cells at the muscle specification/progenitor stage by activating RARs bound directly to mesoderm and skeletal muscle progenitor genes, activating beta-catenin function and inhibiting bone morphogenetic protein (BMP) signalling. Thus, a signalling pathway can function at multiple levels to positively regulate a developmental program and can function by abrogating inhibitory pathways. Finally, since RA enhances skeletal muscle progenitor formation, it will be a valuable tool for designing future stem cell therapies.


Asunto(s)
Proteína Morfogenética Ósea 4/metabolismo , Músculo Esquelético/citología , Células Madre/citología , Células Madre/efectos de los fármacos , Tretinoina/farmacología , beta Catenina/metabolismo , Animales , Tipificación del Cuerpo/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Línea Celular , Linaje de la Célula/efectos de los fármacos , Dimetilsulfóxido/farmacología , Células Madre Embrionarias/citología , Células Madre Embrionarias/efectos de los fármacos , Células Madre Embrionarias/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Genes Dominantes , Humanos , Ratones , Modelos Biológicos , Desarrollo de Músculos/efectos de los fármacos , Proteína MioD/genética , Proteína MioD/metabolismo , Miocitos Cardíacos/citología , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Organogénesis/efectos de los fármacos , Paxillin/genética , Paxillin/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...