Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Drug Saf ; 35(12): 1099-117, 2012 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-23137150

RESUMEN

Current key challenges and controversies encountered in the identification of potentially hepatotoxic drugs and the assessment of drug-induced liver injury (DILI) are covered in this article. There is substantial debate over the classification of DILI itself, including the definition and validity of terms such as 'intrinsic' and 'idiosyncratic'. So-called idiosyncratic DILI is typically rare and requires one or more susceptibility factors in individuals. Consequently, it has been difficult to reproduce in animal models, which has limited the understanding of its underlying mechanisms despite numerous hypotheses. Advances in predictive models would also help to enable preclinical elimination of drug candidates and development of novel biomarkers. A small number of liver laboratory tests have been routinely used to help identify DILI, but their interpretation can be limited and confounded by multiple factors. Improved preclinical and clinical biomarkers are therefore needed to accurately detect early signals of liver injury, distinguish drug hepatotoxicity from other forms of liver injury, and differentiate mild from clinically important liver injury. A range of potentially useful biomarkers are emerging, although so far most have only been used preclinically, with only a few validated and used in the clinic for specific circumstances. Advances in the development of genomic biomarkers will improve the prediction and detection of hepatic injury in future. Establishing a definitive clinical diagnosis of DILI can be difficult, since it is based on circumstantial evidence by excluding other aetiologies and, when possible, identifying a drug-specific signature. DILI signals based on standard liver test abnormalities may be affected by underlying diseases such as hepatitis B and C, HIV and cancer, as well as the concomitant use of hepatotoxic drugs to treat some of these conditions. Therefore, a modified approach to DILI assessment is justified in these special populations and a suggested framework is presented that takes into account underlying disease when evaluating DILI signals in individuals. Detection of idiosyncratic DILI should, in some respects, be easier in the postmarketing setting compared with the clinical development programme, since there is a much larger and more varied patient population exposure over longer timeframes. However, postmarketing safety surveillance is currently limited by the quantity and quality of information available to make an accurate diagnosis, the lack of a control group and the rarity of cases. The pooling of multiple healthcare databases, which could potentially contain different types of patient data, is advised to address some of these deficiencies.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas/etiología , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Hígado/efectos de los fármacos , Biomarcadores/metabolismo , Bases de Datos Factuales , Humanos , Factores de Riesgo
2.
Drug Metab Rev ; 44(1): 34-87, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21892896

RESUMEN

A frequent mechanism for drug-induced liver injury (DILI) is the formation of reactive metabolites that trigger hepatitis through direct toxicity or immune reactions. Both events cause mitochondrial membrane disruption. Genetic or acquired factors predispose to metabolite-mediated hepatitis by increasing the formation of the reactive metabolite, decreasing its detoxification, or by the presence of critical human leukocyte antigen molecule(s). In other instances, the parent drug itself triggers mitochondrial membrane disruption or inhibits mitochondrial function through different mechanisms. Drugs can sequester coenzyme A or can inhibit mitochondrial ß-oxidation enzymes, the transfer of electrons along the respiratory chain, or adenosine triphosphate (ATP) synthase. Drugs can also destroy mitochondrial DNA, inhibit its replication, decrease mitochondrial transcripts, or hamper mitochondrial protein synthesis. Quite often, a single drug has many different effects on mitochondrial function. A severe impairment of oxidative phosphorylation decreases hepatic ATP, leading to cell dysfunction or necrosis; it can also secondarily inhibit ß-oxidation, thus causing steatosis, and can also inhibit pyruvate catabolism, leading to lactic acidosis. A severe impairment of ß-oxidation can cause a fatty liver; further, decreased gluconeogenesis and increased utilization of glucose to compensate for the inability to oxidize fatty acids, together with the mitochondrial toxicity of accumulated free fatty acids and lipid peroxidation products, may impair energy production, possibly leading to coma and death. Susceptibility to parent drug-mediated mitochondrial dysfunction can be increased by factors impairing the removal of the toxic parent compound or by the presence of other medical condition(s) impairing mitochondrial function. New drug molecules should be screened for possible mitochondrial effects.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Hígado/metabolismo , Mitocondrias Hepáticas/metabolismo , Respiración de la Célula/efectos de los fármacos , Enfermedad Hepática Inducida por Sustancias y Drogas/patología , ADN Mitocondrial/biosíntesis , ADN Mitocondrial/efectos de los fármacos , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Hígado Graso/etiología , Hígado Graso/metabolismo , Hígado Graso/patología , Humanos , Sistema Inmunológico/metabolismo , Hígado/patología , Mitocondrias Hepáticas/efectos de los fármacos , Mitocondrias Hepáticas/patología , Mitocondrias Hepáticas/ultraestructura , Proteínas Mitocondriales/biosíntesis , Proteínas Mitocondriales/efectos de los fármacos , Oxidación-Reducción , Preparaciones Farmacéuticas/metabolismo , Especies Reactivas de Oxígeno/metabolismo
3.
J Hepatol ; 56(2): 426-32, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21907168

RESUMEN

BACKGROUND & AIMS: Genetic dimorphisms modulate the activities of several pro- or antioxidant enzymes, including myeloperoxidase (MPO), catalase (CAT), manganese superoxide dismutase (SOD2), and glutathione peroxidase 1 (GPx1). We assessed the role of the G(-463)A-MPO, T(-262)C-CAT, Ala16Val-SOD2, and Pro198Leu-GPx1 variants in modulating HCC development in patients with HCV-induced cirrhosis. METHODS: Two hundred and five patients with HCV-induced, biopsy-proven cirrhosis but without detectable HCC at inclusion were prospectively followed-up for HCC development. The influence of various genotypes on HCC occurrence was assessed with the Kaplan-Meier method. RESULTS: During follow-up (103.2±3.4 months), 84 patients (41%) developed HCC, and 66 died. Whereas the Ala16Val-SOD2 or Pro198Leu-GPx1 dimorphisms did not modulate the risk, HCC occurrence was increased in patients with either the homozygous GG-MPO genotype (HR=2.8 [1.7-4.4]; first quartile time to HCC occurrence: 45 vs. 96 months; LogRank <0.0001) or the homozygous CC-CAT genotype (HR=1.74 [1.06-2.82]; first quartile time to HCC occurrence: 55 vs. 96 months; LogRank=0.02). Compared to patients with neither of these two at risk factors, patients with only the CC-CAT genotype had a HR of 2.05 [0.9-4.6] (p=0.08) and patients with only the GG-MPO genotype had a HR of 3.8 [1.5-9.1] (p=0.002), while patients with both risk factors had an HR of 4.8 [2.2-10.4] (p<0.0001). However, only the GG-MPO genotype was independently associated with the HCC risk in multivariate Cox analysis. CONCLUSIONS: The high activity-associated GG-MPO genotype increases the rate of HCC occurrence in patients with HCV-induced cirrhosis.


Asunto(s)
Carcinoma Hepatocelular/etiología , Hepatitis C Crónica/complicaciones , Cirrosis Hepática/complicaciones , Neoplasias Hepáticas/etiología , Peroxidasa/genética , Regiones Promotoras Genéticas , Sustitución de Aminoácidos , Carcinoma Hepatocelular/enzimología , Carcinoma Hepatocelular/genética , Catalasa/genética , Femenino , Variación Genética , Genotipo , Glutatión Peroxidasa/genética , Humanos , Cirrosis Hepática/etiología , Neoplasias Hepáticas/enzimología , Neoplasias Hepáticas/genética , Masculino , Persona de Mediana Edad , Polimorfismo de Nucleótido Simple , Factores de Riesgo , Superóxido Dismutasa/genética , Glutatión Peroxidasa GPX1
4.
Antioxid Redox Signal ; 15(11): 2837-54, 2011 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-21767162

RESUMEN

Hepatic energy depletion has been described in severe sepsis, and lipopolysaccharide (LPS) has been shown to cause mitochondrial DNA (mtDNA) damage. To clarify the mechanisms of LPS-induced mtDNA damage and mitochondrial alterations, we treated wild-type (WT) or transgenic manganese superoxide dismutase-overerexpressing (MnSOD(+++)) mice with a single dose of LPS (5 mg/kg). In WT mice, LPS increased mitochondrial reactive oxygen species formation, hepatic inducible nitric oxide synthase (NOS) mRNA and protein, tumor necrosis factor-alpha, interleukin-1 beta, and high-mobility group protein B1 concentrations. Six to 48 h after LPS administration (5 mg/kg), liver mtDNA levels, respiratory complex I activity, and adenosine triphosphate (ATP) contents were decreased. In addition, LPS increased interferon-ß concentration and decreased mitochondrial transcription factor A (Tfam) mRNA, Tfam protein, and mtDNA-encoded mRNAs. Morphological studies showed mild hepatic inflammation. The LPS (5 mg/kg)-induced mtDNA depletion, complex I inactivation, ATP depletion, and alanine aminotransferase increase were prevented in MnSOD(+++) mice or in WT mice cotreated with 1400W (a NOS inhibitor), (2-(2,2,6,6-tetramethylpiperidin-1-oxyl-4-ylamino)-2-oxoethyl)triphenylphosphonium chloride, monohydrate (a superoxide scavenger) or uric acid (a peroxynitrite scavenger). The MnSOD overexpression delayed death in mice challenged by a higher, lethal dose of LPS (25 mg/kg). In conclusion, LPS administration damages mtDNA and alters mitochondrial function. The protective effects of MnSOD, NOS inhibitors, and superoxide or peroxynitrite scavengers point out a role of the superoxide anion reacting with NO to form mtDNA- and protein-damaging peroxynitrite. In addition to the acute damage caused by reactive species, decreased levels of mitochondrial transcripts contribute to mitochondrial dysfunction.


Asunto(s)
ADN Mitocondrial/metabolismo , Lipopolisacáridos/farmacología , Complejos de ATP Sintetasa/metabolismo , Aconitato Hidratasa/metabolismo , Adenosina Trifosfato/metabolismo , Alanina Transaminasa/sangre , Animales , Proteínas de Unión al ADN/metabolismo , Complejo I de Transporte de Electrón/metabolismo , Complejo III de Transporte de Electrones/metabolismo , Complejo IV de Transporte de Electrones/metabolismo , Células Hep G2 , Proteínas del Grupo de Alta Movilidad/metabolismo , Humanos , Interferón beta/sangre , Interferón beta/farmacología , Hierro/sangre , Hierro/metabolismo , Hígado/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Nitratos/sangre , Óxido Nítrico Sintasa de Tipo II/antagonistas & inhibidores , Óxido Nítrico Sintasa de Tipo II/genética , Óxido Nítrico Sintasa de Tipo II/metabolismo , Nitritos/sangre , Especies Reactivas de Oxígeno/metabolismo , Sepsis/metabolismo , Superóxido Dismutasa/genética , Superóxido Dismutasa/metabolismo , Sustancias Reactivas al Ácido Tiobarbitúrico/metabolismo , Receptor Toll-Like 4/metabolismo , Factores de Transcripción/metabolismo , Transcripción Genética , Factor de Necrosis Tumoral alfa/sangre , Tirosina/análogos & derivados , Tirosina/metabolismo
5.
Antioxid Redox Signal ; 15(1): 31-8, 2011 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-20673159

RESUMEN

Iron-induced oxidative stress promotes hepatic injury in hereditary hemochromatosis, which can be influenced by genetic traits affecting antioxidant enzymes. We assessed the influence of Ala16Val-superoxide dismutase 2, Pro198Leu-glutathione peroxidase 1, and -463G/A-myeloperoxidase genotypes (high activity for the Ala, Pro, and G alleles, respectively) on the risks of cirrhosis and hepatocellular carcinoma (HCC) in patients homozygous for the C282Y-hemochromatosis (HFE) gene mutation. Both the 2G-myeloperoxidase genotype and carriage of one or two copies of the Ala-superoxide dismutase 2 allele were more frequent in patients with cirrhosis or HCC. Patients cumulating these two genetic traits had higher rates of cirrhosis and HCC than other patients.


Asunto(s)
Antioxidantes/metabolismo , Hemocromatosis/genética , Carcinoma Hepatocelular/enzimología , Carcinoma Hepatocelular/genética , Femenino , Genotipo , Glutatión Peroxidasa/genética , Hemocromatosis/enzimología , Humanos , Cirrosis Hepática/enzimología , Cirrosis Hepática/genética , Neoplasias Hepáticas/enzimología , Neoplasias Hepáticas/genética , Masculino , Persona de Mediana Edad , Peroxidasa/genética , Superóxido Dismutasa/genética , Glutatión Peroxidasa GPX1
6.
Dig Dis ; 28(6): 756-75, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-21525761

RESUMEN

Both acute and chronic alcohol consumption increase reactive oxygen species (ROS) formation and lipid peroxidation, whose products damage hepatic mitochondrial DNA (mtDNA). To test whether manganese superoxide dismutase (MnSOD) overexpression modulates acute and chronic alcohol-induced mtDNA lesions, transgenic MnSOD-overexpressing (TgMnSOD(+++)) mice and wild-type (WT) mice were treated by alcohol, either chronically (7 weeks in drinking water) or acutely (single intragastric dose of 5 g/kg). Acute alcohol administration increased mitochondrial ROS formation, decreased mitochondrial glutathione, depleted and damaged mtDNA, durably increased inducible nitric oxide synthase (NOS) expression, plasma nitrites/nitrates and the nitration of tyrosine residues in complex V proteins and decreased complex V activity in WT mice. These effects were prevented in TgMnSOD(+++) mice. In acutely alcoholized WT mice, mtDNA depletion was prevented by tempol, a superoxide scavenger, L-NAME and 1400W, two NOS inhibitors, or uric acid, a peroxynitrite scavenger. In contrast, chronic alcohol consumption decreased cytosolic glutathione and increased hepatic iron, lipid peroxidation products and respiratory complex I protein carbonyls only in ethanol-treated TgMnSOD(+++) mice but not in WT mice. In chronic ethanol-fed TgMnSOD(+++) mice, but not WT mice, mtDNA was damaged and depleted, and the iron chelator, deferoxamine (DFO), prevented this effect. In conclusion, MnSOD overexpression prevents mtDNA depletion after an acute alcohol binge but aggravates this effect after prolonged alcohol consumption, which selectively triggers iron accumulation in TgMnSOD(+++) mice but not in WT mice. In the model of acute alcohol binge, the protective effects of MnSOD, tempol, NOS inhibitors and uric acid suggested a role of the superoxide anion reacting with NO to form mtDNA-damaging peroxynitrite. In the model of prolonged ethanol consumption, the protective effects of DFO suggested the role of iron reacting with hydrogen peroxide to form mtDNA-damaging hydroxyl radical.


Asunto(s)
Consumo de Bebidas Alcohólicas/genética , ADN Mitocondrial/metabolismo , Hígado/metabolismo , Superóxido Dismutasa/metabolismo , Animales , ADN Mitocondrial/genética , Hígado/enzimología , Hepatopatías/enzimología , Hepatopatías/genética , Ratones , Estrés Oxidativo
7.
J Pharmacol Exp Ther ; 332(3): 886-97, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20016022

RESUMEN

Alcohol consumption increases reactive oxygen species (ROS) formation, which can damage mitochondrial DNA (mtDNA) and alter mitochondrial function. To test whether manganese superoxide dismutase (MnSOD) modulates acute alcohol-induced mitochondrial alterations, transgenic MnSOD-overexpressing (MnSOD(+++)) mice, heterozygous knockout (MnSOD(+/-)) mice, and wild-type (WT) littermates were sacrificed 2 or 24 h after intragastric ethanol administration (5 g/kg). Alcohol administration further increased MnSOD activity in MnSOD(+++) mice, but further decreased it in MnSOD(+/-) mice. In WT mice, alcohol administration transiently increased mitochondrial ROS formation, decreased mitochondrial glutathione, depleted and damaged mtDNA, and decreased complex I and V activities; alcohol durably increased inducible nitric-oxide synthase (NOS) expression, plasma nitrites/nitrates, and the nitration of tyrosine residues in complex V proteins. These effects were prevented in MnSOD(+++) mice and prolonged in MnSOD(+/-) mice. In alcoholized WT or MnSOD(+/-) mice, mtDNA depletion and the nitration of tyrosine residues in complex I and V proteins were prevented or attenuated by cotreatment with tempol (4-hydroxy-2,2,6,6-tetramethylpiperidine-N-oxyl), a superoxide scavenger; N(omega)-nitro-l-arginine methyl ester and N-[3-(aminomethyl)benzyl]acetamidine (1,400W), two NOS inhibitors; or uric acid, a peroxynitrite scavenger. In conclusion, MnSOD overexpression prevents, and MnSOD deficiency prolongs, mtDNA depletion after an acute alcohol binge in mice. The protective effects of MnSOD, tempol, NOS inhibitors, and uric acid point out a role of the superoxide anion reacting with NO to form mtDNA-damaging peroxynitrite.


Asunto(s)
ADN Mitocondrial/metabolismo , Etanol/envenenamiento , Hígado/metabolismo , Ácido Peroxinitroso/metabolismo , Superóxido Dismutasa/fisiología , Animales , Caspasa 3/metabolismo , Óxidos N-Cíclicos/farmacología , Proteínas de Unión al ADN/metabolismo , Complejo I de Transporte de Electrón/metabolismo , Depuradores de Radicales Libres/farmacología , Glutatión Peroxidasa/metabolismo , Proteínas del Grupo de Alta Movilidad/metabolismo , Hierro/metabolismo , Ratones , Ratones Noqueados , Mitocondrias Hepáticas/fisiología , ATPasas de Translocación de Protón Mitocondriales/metabolismo , NG-Nitroarginina Metil Éster/farmacología , Óxido Nítrico Sintasa de Tipo II/antagonistas & inhibidores , Óxido Nítrico Sintasa de Tipo II/biosíntesis , Especies Reactivas de Oxígeno/metabolismo , Marcadores de Spin , Superóxido Dismutasa/biosíntesis , Factores de Transcripción/metabolismo , Ácido Úrico/farmacología
8.
Handb Exp Pharmacol ; (196): 311-65, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20020267

RESUMEN

Mitochondrial dysfunction is a major mechanism of liver injury. A parent drug or its reactive metabolite can trigger outer mitochondrial membrane permeabilization or rupture due to mitochondrial permeability transition. The latter can severely deplete ATP and cause liver cell necrosis, or it can instead lead to apoptosis by releasing cytochrome c, which activates caspases in the cytosol. Necrosis and apoptosis can trigger cytolytic hepatitis resulting in lethal fulminant hepatitis in some patients. Other drugs severely inhibit mitochondrial function and trigger extensive microvesicular steatosis, hypoglycaemia, coma, and death. Milder and more prolonged forms of drug-induced mitochondrial dysfunction can also cause macrovacuolar steatosis. Although this is a benign liver lesion in the short-term, it can progress to steatohepatitis and then to cirrhosis. Patient susceptibility to drug-induced mitochondrial dysfunction and liver injury can sometimes be explained by genetic or acquired variations in drug metabolism and/or elimination that increase the concentration of the toxic species (parent drug or metabolite). Susceptibility may also be increased by the presence of another condition, which also impairs mitochondrial function, such as an inborn mitochondrial cytopathy, beta-oxidation defect, certain viral infections, pregnancy, or the obesity-associated metabolic syndrome. Liver injury due to mitochondrial dysfunction can have important consequences for pharmaceutical companies. It has led to the interruption of clinical trials, the recall of several drugs after marketing, or the introduction of severe black box warnings by drug agencies. Pharmaceutical companies should systematically investigate mitochondrial effects during lead selection or preclinical safety studies.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas/etiología , Mitocondrias Hepáticas/efectos de los fármacos , Enfermedades Mitocondriales/inducido químicamente , Animales , Apoptosis/efectos de los fármacos , Biotransformación , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Daño del ADN , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Metabolismo Energético/efectos de los fármacos , Humanos , Mitocondrias Hepáticas/metabolismo , Mitocondrias Hepáticas/patología , Enfermedades Mitocondriales/metabolismo , Enfermedades Mitocondriales/patología , Proteínas de Transporte de Membrana Mitocondrial/efectos de los fármacos , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Membranas Mitocondriales/efectos de los fármacos , Membranas Mitocondriales/metabolismo , Poro de Transición de la Permeabilidad Mitocondrial , Necrosis , Estrés Oxidativo/efectos de los fármacos
9.
Hepatology ; 50(5): 1484-93, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19731237

RESUMEN

UNLABELLED: Alcohol increases reactive oxygen species (ROS) formation in hepatocyte mitochondria and by reduced nicotinamide adenine dinucleotide phosphate oxidases and myeloperoxidase (MPO) in Kupffer cells and liver-infiltrating neutrophils. Manganese superoxide dismutase (MnSOD) converts superoxide anion into hydrogen peroxide, which, unless detoxified by glutathione peroxidase or catalase (CAT), can form the hydroxyl radical with iron. Our aim was to determine whether Ala16Val-superoxide dismutase 2 (SOD2), G-463A-MPO, or T-262C-CAT dimorphisms modulate the risks of hepatocellular carcinoma (HCC) and death in alcoholic cirrhosis. Genotypes and the hepatic iron score were assessed in 190 prospectively followed patients with alcoholic cirrhosis. During follow-up (61.1 +/- 2.7 months), 51 patients developed HCC, and 71 died. The T-262C-CAT dimorphism did not modify hepatic iron, HCC, or death. The GG-MPO genotype did not modify iron but increased the risks of HCC and death. The hazard ratio (HR) was 4.7 (2.1-10.1) for HCC and 3.6 (1.9-6.7) for death. Carriage of one or two Ala-SOD2 allele(s) was associated with higher liver iron scores and higher risks of HCC and death. The 5-year incidence of HCC was 34.4% in patients with both the GG-MPO genotype and one or two Ala-SOD2 alleles, 5.1% in patients with only one of these two traits, and 0% in patients with none of these traits. Corresponding 5-year death rates were 37.6%, 11.6%, and 5%. CONCLUSION: The combination of the GG-MPO genotype (leading to high MPO expression) and at least one Ala-SOD2 allele (associated with high liver iron score) markedly increased the risks of HCC occurrence and death in patients with alcoholic cirrhosis.


Asunto(s)
Carcinoma Hepatocelular/genética , Predisposición Genética a la Enfermedad/genética , Cirrosis Hepática Alcohólica/mortalidad , Neoplasias Hepáticas/genética , Peroxidasa/genética , Polimorfismo Genético/genética , Superóxido Dismutasa/genética , Anciano , Alelos , Carcinoma Hepatocelular/epidemiología , Carcinoma Hepatocelular/metabolismo , Catalasa/genética , Catalasa/metabolismo , Femenino , Estudios de Seguimiento , Genotipo , Humanos , Incidencia , Hierro/metabolismo , Estimación de Kaplan-Meier , Hígado/metabolismo , Cirrosis Hepática Alcohólica/metabolismo , Neoplasias Hepáticas/epidemiología , Neoplasias Hepáticas/metabolismo , Masculino , Persona de Mediana Edad , Peroxidasa/metabolismo , Estudios Prospectivos , Estudios Retrospectivos , Factores de Riesgo , Superóxido Dismutasa/metabolismo
10.
Toxicol Appl Pharmacol ; 234(3): 326-38, 2009 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-19063909

RESUMEN

Alcohol consumption increases reactive oxygen species formation and lipid peroxidation, whose products can damage mitochondrial DNA (mtDNA) and alter mitochondrial function. A possible role of manganese superoxide dismutase (MnSOD) on these effects has not been investigated. To test whether MnSOD overexpression modulates alcohol-induced mitochondrial alterations, we added ethanol to the drinking water of transgenic MnSOD-overexpressing (TgMnSOD) mice and their wild type (WT) littermates for 7 weeks. In TgMnSOD mice, alcohol administration further increased the activity of MnSOD, but decreased cytosolic glutathione as well as cytosolic glutathione peroxidase activity and peroxisomal catalase activity. Whereas ethanol increased cytochrome P-450 2E1 and mitochondrial ROS generation in both WT and TgMnSOD mice, hepatic iron, lipid peroxidation products and respiratory complex I protein carbonyls were only increased in ethanol-treated TgMnSOD mice but not in WT mice. In ethanol-fed TgMnSOD mice, but not ethanol-fed WT mice, mtDNA was depleted, and mtDNA lesions blocked the progress of polymerases. The iron chelator, DFO prevented hepatic iron accumulation, lipid peroxidation, protein carbonyl formation and mtDNA depletion in alcohol-treated TgMnSOD mice. Alcohol markedly decreased the activities of complexes I, IV and V of the respiratory chain in TgMnSOD, with absent or lesser effects in WT mice. There was no inflammation, apoptosis or necrosis, and steatosis was similar in ethanol-treated WT and TgMnSOD mice. In conclusion, prolonged alcohol administration selectively triggers iron accumulation, lipid peroxidation, respiratory complex I protein carbonylation, mtDNA lesions blocking the progress of polymerases, mtDNA depletion and respiratory complex dysfunction in TgMnSOD mice but not in WT mice.


Asunto(s)
Consumo de Bebidas Alcohólicas/efectos adversos , Daño del ADN , ADN Mitocondrial/metabolismo , Etanol/toxicidad , Hígado/efectos de los fármacos , Mitocondrias Hepáticas/efectos de los fármacos , Superóxido Dismutasa/metabolismo , Animales , Peso Corporal , Caspasa 3/metabolismo , Catalasa/metabolismo , Citocromo P-450 CYP2E1/metabolismo , Proteínas de Unión al ADN/metabolismo , Deferoxamina/farmacología , Regulación hacia Abajo , Complejo I de Transporte de Electrón/metabolismo , Etanol/sangre , Etanol/metabolismo , Glutatión/metabolismo , Glutatión Peroxidasa/metabolismo , Proteínas del Grupo de Alta Movilidad/metabolismo , Hierro/metabolismo , Quelantes del Hierro/farmacología , Peroxidación de Lípido/efectos de los fármacos , Hígado/enzimología , Hígado/ultraestructura , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Mitocondrias Hepáticas/enzimología , Óxido Nítrico Sintasa de Tipo II/metabolismo , Estrés Oxidativo/efectos de los fármacos , Carbonilación Proteica/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Superóxido Dismutasa/genética , Sustancias Reactivas al Ácido Tiobarbitúrico/metabolismo , Factores de Transcripción/metabolismo , Regulación hacia Arriba
11.
Free Radic Biol Med ; 45(9): 1308-17, 2008 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-18760346

RESUMEN

The Ala/16Val dimorphism incorporates alanine (Ala) or valine (Val) in the mitochondrial targeting sequence of manganese superoxide dismutase (MnSOD), modifying MnSOD mitochondrial import and activity. In alcoholic cirrhotic patients, the Ala-MnSOD allele is associated with hepatic iron accumulation and an increased risk of hepatocellular carcinoma. The Ala-MnSOD variant could modulate the expression of proteins involved in iron storage (cytosolic ferritin), uptake (transferrin receptors, TfR-1 and-2), extrusion (hepcidin), and intracellular distribution (frataxin) to trigger hepatic iron accumulation. We therefore assessed the Ala/Val-MnSOD genotype and the hepatic iron score in 162 alcoholic cirrhotic patients. In our cohort, this hepatic iron score increased with the number of Ala-MnSOD alleles. We also transfected Huh7 cells with Ala-MnSOD-or Val-MnSOD-encoding plasmids and assessed cellular iron, MnSOD activity, and diverse mRNAs and proteins. In Huh7 cells, MnSOD activity was higher after Ala-MnSOD transfection than after Val-MnSOD transfection. Additionally, iron supplementation decreased transfected MnSOD proteins and activities. Ala-MnSOD transfection increased the mRNAs and proteins of ferritin, hepcidin, and TfR2, decreased the expression of frataxin, and caused cellular iron accumulation. In contrast, Val-MnSOD transfection had limited effects. In conclusion, the Ala-MnSOD variant favors hepatic iron accumulation by modulating the expression of proteins involved in iron homeostasis.


Asunto(s)
Alanina/química , Carcinoma Hepatocelular/metabolismo , Hierro/metabolismo , Neoplasias Hepáticas/metabolismo , Superóxido Dismutasa/metabolismo , Valina/química , Alcoholismo/patología , Alelos , Línea Celular , Genotipo , Homeostasis , Humanos , Hierro/química , Proteínas de Unión a Hierro/metabolismo , Modelos Biológicos , Plásmidos/metabolismo , Frataxina
12.
Biochem Soc Trans ; 36(Pt 5): 920-9, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-18793162

RESUMEN

The incidence of obesity and non-esterified ('free') fatty acid-associated metabolic disorders such as the metabolic syndrome and diabetes is increasing dramatically in most countries. Although the pathogenesis of these metabolic disorders is complex, there is emerging evidence that ROS (reactive oxygen species) are critically involved in the aberrant signalling and tissue damage observed in this context. Indeed, it is now widely accepted that ROS not only play an important role in physiology, but also contribute to cell and tissue dysfunction. Inappropriate ROS generation may contribute to tissue dysfunction in two ways: (i) dysregulation of redox-sensitive signalling pathways, and (ii) oxidative damage to biological structures (DNA, proteins, lipids, etc.). An important source of ROS is the NOX family of NADPH oxidases. Several NOX isoforms are expressed in the liver and pancreatic beta-cells. There is now evidence that inappropriate activation of NOX enzymes may damage the liver and pancreatic beta-cells. In the context of the metabolic syndrome, the emerging epidemic of non-alcoholic steatohepatitis is thought to be NOX/ROS-dependent and of particular medical relevance. NOX/ROS-dependent beta-cell damage is thought to be involved in glucolipotoxicity and thereby leads to progression from the metabolic syndrome to Type 2 diabetes. Thus understanding the role of NOX enzymes in liver and beta-cell damage should lead to an increased understanding of pathomechanisms in the metabolic syndrome and diabetes and may identify useful targets for novel therapeutic strategies.


Asunto(s)
Diabetes Mellitus Tipo 2/enzimología , Islotes Pancreáticos , Isoenzimas/metabolismo , Hígado/enzimología , Síndrome Metabólico/enzimología , NADPH Oxidasas/metabolismo , Animales , Diabetes Mellitus Tipo 2/fisiopatología , Humanos , Resistencia a la Insulina , Islotes Pancreáticos/citología , Islotes Pancreáticos/enzimología , Hepatopatías/metabolismo , Hepatopatías/fisiopatología , Síndrome Metabólico/fisiopatología , Estrés Oxidativo , Especies Reactivas de Oxígeno/metabolismo
13.
Fundam Clin Pharmacol ; 22(4): 335-53, 2008 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-18705745

RESUMEN

Mitochondrial dysfunction is a major mechanism whereby drugs can induce liver injury and other serious side effects such as lactic acidosis and rhabdomyolysis in some patients. By severely altering mitochondrial function in the liver, drugs can induce microvesicular steatosis, a potentially severe lesion that can be associated with profound hypoglycaemia and encephalopathy. They can also trigger hepatic necrosis and/or apoptosis, causing cytolytic hepatitis, which can evolve into liver failure. Milder mitochondrial dysfunction, sometimes combined with an inhibition of triglyceride egress from the liver, can induce macrovacuolar steatosis, a benign lesion in the short term. However, in the long term this lesion can evolve in some individuals towards steatohepatitis, which itself can progress to extensive fibrosis and cirrhosis. As liver injury caused by mitochondrial dysfunction can induce the premature end of clinical trials, or drug withdrawal after marketing, it should be detected during the preclinical safety studies. Several in vitro and in vivo investigations can be performed to determine if newly developed drugs disturb mitochondrial fatty acid oxidation (FAO) and the oxidative phosphorylation (OXPHOS) process, deplete hepatic mitochondrial DNA (mtDNA), or trigger the opening of the mitochondrial permeability transition (MPT) pore. As drugs can be deleterious for hepatic mitochondria in some individuals but not in others, it may also be important to use novel animal models with underlying mitochondrial and/or metabolic abnormalities. This could help us to better predict idiosyncratic liver injury caused by drug-induced mitochondrial dysfunction.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas , Evaluación Preclínica de Medicamentos , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Hígado/efectos de los fármacos , Mitocondrias Hepáticas/efectos de los fármacos , Animales , Enfermedad Hepática Inducida por Sustancias y Drogas/fisiopatología , Hígado Graso/inducido químicamente , Hígado Graso/fisiopatología , Humanos , Hígado/fisiología , Hígado/ultraestructura , Hepatopatías/patología , Pruebas de Toxicidad
14.
Toxicol In Vitro ; 22(6): 1511-9, 2008 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-18603402

RESUMEN

Mallory-Denk bodies (MDB) are hepatocyte inclusions containing cytokeratin 8 (CK8) which can develop, along with other steatohepatitis lesions, in patients treated with amiodarone, perhexiline maleate or 4,4'-diethylaminoethoxyhexestrol. These drugs accumulate lipids, whose subsequent peroxidation liberates reactive by-products, like malondialdehyde (MDA). The formation of MDB has been previously reproduced by 3,5-diethoxycarbonyl-1,4-dihydrocollidine or griseofulvin administration which cross-link CK8 by tissue transglutaminase, thus forming an entangled network, from which MDB progressively arise. The present study depicts the mechanisms initiating MDB formation by steatohepatitis-inducing drugs. Short incubation of hepatocytes with amiodarone (50 microM), 4,4'-diethylaminoethoxyhexestrol (50 microM) or perhexiline maleate (25 microM) increased the pool of CK8 monomers and increased cell calcium to activate Ca(++)-dependent transglutaminases which cross-linked the CK8 monomers into CK8-containing oligomers. The present study also provides the first evidence that MDA might directly participate in MDB formation, as this reactive agent cross-linked purified CK8 or albumin in vitro, disrupted the cytokeratin network of isolated hepatocytes, and bridged CK8 molecules. In conclusion, steatohepatitis-inducing drugs increase cell calcium and activate tissue transglutaminase, which cross-links CK8 to form a molecular scaffold, from which MDB might secondarily arise. Malondialdehyde also cross-links CK8, albeit through a different mechanism, and might also contribute to MDB formation.


Asunto(s)
Hepatocitos/efectos de los fármacos , Cuerpos de Inclusión/efectos de los fármacos , Queratina-8/efectos de los fármacos , Malondialdehído/metabolismo , Amiodarona/toxicidad , Animales , Calcio/metabolismo , Hígado Graso/inducido químicamente , Proteínas de Unión al GTP/efectos de los fármacos , Proteínas de Unión al GTP/metabolismo , Hepatocitos/metabolismo , Hexestrol/análogos & derivados , Hexestrol/toxicidad , Cuerpos de Inclusión/metabolismo , Queratina-8/metabolismo , Masculino , Perhexilina/análogos & derivados , Perhexilina/toxicidad , Proteína Glutamina Gamma Glutamiltransferasa 2 , Proteínas , Ratas , Ratas Sprague-Dawley , Transglutaminasas/efectos de los fármacos , Transglutaminasas/metabolismo
15.
Toxicol Appl Pharmacol ; 231(3): 336-43, 2008 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-18572215

RESUMEN

Fas stimulation recruits neutrophils and activates macrophages that secrete tumor necrosis factor-alpha (TNF-alpha), which aggravates Fas-mediated liver injury. To determine whether nonsteroidal anti-inflammatory drugs modify these processes, we challenged 24-hour-fasted mice with the agonistic Jo2 anti-Fas antibody (4 microg/mouse), and treated the animals 1 h later with saline or ibuprofen (250 mg/kg), a dual cyclooxygenase (COX)-1 and COX-2 inhibitor. Ibuprofen attenuated the Jo2-mediated recruitment/activation of myeloperoxidase-secreting neutrophils/macrophages in the liver, and attenuated the surge in serum TNF-alpha. Ibuprofen also minimized hepatic glutathione depletion, Bid truncation, caspase activation, outer mitochondrial membrane rupture, hepatocyte apoptosis and the increase in serum alanine aminotransferase (ALT) activity 5 h after Jo2 administration, to finally decrease mouse mortality at later times. The concomitant administration of pentoxifylline (decreasing TNF-alpha secretion) and infliximab (trapping TNF-alpha) likewise attenuated the Jo2-mediated increase in TNF-alpha, the decrease in hepatic glutathione, and the increase in serum ALT activity 5 h after Jo2 administration. The concomitant administration of the COX-1 inhibitor, SC-560 (10 mg/kg) and the COX-2 inhibitor, celecoxib (40 mg/kg) 1 h after Jo2 administration, also decreased liver injury 5 h after Jo2 administration. In contrast, SC-560 (10 mg/kg) or celecoxib (40 or 160 mg/kg) given alone had no significant protective effects. In conclusion, secondary TNF-alpha secretion plays an important role in Jo2-mediated glutathione depletion and liver injury. The combined inhibition of COX-1 and COX-2 by ibuprofen attenuates TNF-alpha secretion, glutathione depletion, mitochondrial alterations, hepatic apoptosis and mortality in Jo2-treated fasted mice.


Asunto(s)
Apoptosis/fisiología , Glutatión/deficiencia , Hepatitis/metabolismo , Ibuprofeno/administración & dosificación , Factor de Necrosis Tumoral alfa/sangre , Receptor fas/toxicidad , Animales , Apoptosis/efectos de los fármacos , Apoptosis/inmunología , Hepatitis/enzimología , Hepatitis/mortalidad , Hepatitis/patología , Hepatocitos/efectos de los fármacos , Hepatocitos/patología , Ibuprofeno/farmacología , Masculino , Ratones , Ratones Endogámicos ICR , Factor de Necrosis Tumoral alfa/antagonistas & inhibidores , Factor de Necrosis Tumoral alfa/metabolismo
16.
Am J Physiol Endocrinol Metab ; 294(5): E939-51, 2008 May.
Artículo en Inglés | MEDLINE | ID: mdl-18349116

RESUMEN

Partial leptin deficiency is not uncommon in the general population. We hypothesized that leptin insufficiency could favor obesity, nonalcoholic steatohepatitis (NASH), and other metabolic abnormalities, particularly under high calorie intake. Thus, mice partially deficient in leptin (ob/+) and their wild-type (+/+) littermates were fed for 4 mo with a standard-calorie (SC) or a high-calorie (HC) diet. Some ob/+ mice fed the HC diet were also treated weekly with leptin. Our results showed that, when fed the SC diet, ob/+ mice did not present significant metabolic abnormalities except for elevated levels of plasma adiponectin. Under high-fat feeding, increased body fat mass, hepatic steatosis, higher plasma total cholesterol, and glucose intolerance were observed in +/+ mice, and these abnormalities were further enhanced in ob/+ mice. Furthermore, some metabolic disturbances, such as blunted plasma levels of leptin and adiponectin, reduced UCP1 expression in brown adipose tissue, increased plasma liver enzymes, beta-hydroxybutyrate and triglycerides, and slight insulin resistance, were observed only in ob/+ mice fed the HC diet. Whereas de novo fatty acid synthesis in liver was decreased in +/+ mice fed the HC diet, it was disinhibited in ob/+ mice along with the restoration of the expression of several lipogenic genes. Enhanced expression of several genes involved in fatty acid oxidation was also observed only in ob/+ animals. Leptin supplementation alleviated most of the metabolic abnormalities observed in ob/+ fed the HC diet. Hence, leptin insufficiency could increase the risk of obesity, NASH, glucose intolerance, and hyperlipidemia in a context of calorie overconsumption.


Asunto(s)
Leptina/deficiencia , Leptina/genética , Enfermedades Metabólicas/genética , Enfermedades Metabólicas/metabolismo , Obesidad/metabolismo , Aconitato Hidratasa/metabolismo , Adiposidad/genética , Animales , Apoptosis/fisiología , Western Blotting , Composición Corporal/fisiología , Proteínas Portadoras/metabolismo , Colesterol/sangre , Dieta , Ingestión de Energía/fisiología , Prueba de Tolerancia a la Glucosa , Glutatión/metabolismo , Hígado/patología , Masculino , Enfermedades Metabólicas/patología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Obesos , Obesidad/etiología , Obesidad/genética , ARN/biosíntesis , ARN/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
17.
Toxicol In Vitro ; 22(3): 730-46, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18191936

RESUMEN

OBJECTIVE: To investigate the possible mechanisms underlying the liver enzyme elevations seen during clinical studies of long-term treatment (>35 days) with ximelagatran, and investigate the usefulness of pre-clinical in vitro systems to predict drug-induced liver effects. METHODS: Ximelagatran and its metabolites were tested for effects on cell viability, mitochondrial function, formation of reactive metabolites and reactive oxygen species, protein binding, and induction of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) gene expression or nuclear orphan receptors. Experimental systems included fresh and cryopreserved hepatocytes, human hepatoma cell lines (HepG2 and HuH-7) and subcellular human liver fractions. RESULTS: Loss of cell viability was only seen in HepG2 cells at ximelagatran concentrations 100 microM and in cryopreserved human hepatocytes at 300 microM, while HuH-7 cells were not affected by 24 h exposure at up to 300 microM ximelagatran. Calcium homeostasis was not affected in HepG2 cells exposed to ximelagatran up to 300 microM for 15 min. There was no evidence for the formation of reactive metabolites when cell systems were exposed to ximelagatran. ALT and AST expression in human hepatoma cell lines were also unchanged by ximelagatran. Mitochondrial functions such as respiration, opening of the transition pore, mitochondrial membrane depolarization and beta-oxidation were not affected by ximelagatran or its metabolites. CONCLUSION: Ximelagatran at concentrations considerably higher than that found in plasma following therapeutic dosing had little or no effect on cellular functions studied in vitro. The in vitro studies therefore did not elucidate the mechanism by which ximelagatran induces liver effects in humans, possibly because of limitations in the experimental systems not reflecting characteristics of the human hepatocyte, restricted exposure time, or because the primary mechanism for the observed clinical liver effects is not on the parenchymal liver cell.


Asunto(s)
Azetidinas/toxicidad , Bencilaminas/toxicidad , Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Fibrinolíticos/toxicidad , Trombina/antagonistas & inhibidores , Adenosina Trifosfato/metabolismo , Animales , Antioxidantes/metabolismo , Apoptosis/efectos de los fármacos , Azetidinas/metabolismo , Bencilaminas/metabolismo , Calcio/metabolismo , Carcinoma Hepatocelular/patología , Línea Celular , Cromatografía Liquida , Criopreservación , Fibrinolíticos/metabolismo , Citometría de Flujo , Hepatocitos/efectos de los fármacos , Humanos , Técnicas In Vitro , Espectrometría de Masas , Mitocondrias Hepáticas/efectos de los fármacos , Mitocondrias Hepáticas/metabolismo , Necrosis , Permeabilidad , Valor Predictivo de las Pruebas , Ratas , Especies Reactivas de Oxígeno/metabolismo , Fracciones Subcelulares/efectos de los fármacos , Fracciones Subcelulares/metabolismo
18.
J Gastroenterol Hepatol ; 22 Suppl 1: S20-7, 2007 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-17567459

RESUMEN

Mitochondrial dysfunction is involved in the three stages of the transition from lack of exercise and excessive food intake to insulin resistance, diabetes and non-alcoholic steatohepatitis (NASH). In muscle, lack of exercise, a fat-rich diet, a polymorphism in peroxisome proliferator-activated receptor gamma coactivator-1 (PGC-1), and possibly age-related mitochondrial DNA (mtDNA) mutations may variously combine their effects to decrease PGC-1 expression, mitochondrial biogenesis and fat oxidation. Together with excessive food intake, insufficient fat oxidation causes fat accumulation and cellular stress in myocytes. The activation of Jun N-terminal kinase and protein kinase C-theta triggers the serine phosphorylation and inactivation of the insulin receptor substrate, and hampers the insulin-mediated translocation of glucose transporter-4 to the plasma membrane. Initially, the trend for increased blood glucose increases insulin secretion by pancreatic beta-cells. High plasma insulin levels compensate for insulin resistance in muscle and maintain normal blood glucose levels. Eventually, however, increased uncoupling protein-2 expression and possibly acquired mtDNA mutations in pancreatic beta-cells can blunt glucose-mediated adenosine triphosphate (ATP) formation and insulin secretion, to cause diabetes in some patients. High plasma glucose and/or insulin levels induce hepatic lipogenesis and cause hepatic steatosis. In fat-engorged hepatocytes, several vicious cycles involving tumor necrosis factor-alpha, reactive oxygen species (ROS), peroxynitrite, and lipid peroxidation products alter respiratory chain polypeptides and mtDNA, thus partially blocking the flow of electrons in the respiratory chain. The overreduction of upstream respiratory chain complexes increases mitochondrial ROS and peroxynitrite formation. Oxidative stress increases the release of lipid peroxidation products and cytokines, which together trigger the liver lesions of NASH.


Asunto(s)
Hígado Graso/fisiopatología , Mitocondrias Hepáticas/fisiología , Animales , Hígado Graso/etiología , Humanos , Resistencia a la Insulina , Metabolismo de los Lípidos/fisiología , Peroxidación de Lípido , Obesidad/fisiopatología , Estrés Oxidativo , Páncreas/fisiopatología , Especies Reactivas de Oxígeno
19.
Antivir Ther ; 12(3): 389-400, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17591029

RESUMEN

OBJECTIVE: Stavudine (d4T), a nucleoside reverse-transcriptase inhibitor (NRTI), can induce lipoatrophy, fatty liver, hyperlactataemia and abnormal liver tests. NRTI toxicity is usually ascribed to mitochondrial DNA (mtDNA) depletion and impaired mitochondrial respiration. However, NRTIs could have effects unrelated to mtDNA. Recently, we reported that 100 mg/kg/day of d4T stimulated fatty acid oxidation (FAO) in mouse liver, and reduced body fatness without depleting white adipose tissue (WAT) mtDNA. We hypothesized that higher d4T doses could further reduce adiposity, while inhibiting hepatic FAO. METHODS: Mice were treated for 2 weeks with d4T (500 mg/kg/day), L-carnitine (200 mg/kg/day) or both drugs concomitantly. Body fatness was assessed by dual energy X-ray absorptiometry, and investigations were performed in plasma, liver, muscle and WAT. RESULTS: D4T reduced the gain of body adiposity, WAT leptin, whole body FAO and plasma ketone bodies, and increased liver triglycerides and plasma aminotransferases with mild ultrastructural abnormalities in hepatocytes. Plasma lactate and respiratory chain activities in tissues were unchanged. Stearoyl-CoA desaturase (SCD-1), an enzyme negatively regulated by leptin, was overexpressed in liver. High doses of beta-aminoisobutyric acid (BAIBA), a d4T catabolite, increased plasma ketone bodies. Although L-carnitine did not correct body adiposity, it prevented d4T-induced impairment of FAO and liver abnormalities. CONCLUSIONS: D4T overdosage triggers fat wasting, leptin insufficiency and mild liver damage, without causing respiratory chain dysfunction. Overexpression of SCD-1 reduces fatty acid oxidation and overcomes the stimulating effect of BAIBA on hepatic FAO. L-carnitine does not correct leptin insufficiency but prevents d4T-induced impairment of FAO and liver damage.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas , Lipodistrofia/inducido químicamente , Mitocondrias Hepáticas/metabolismo , Inhibidores de la Transcriptasa Inversa/administración & dosificación , Estavudina/administración & dosificación , Síndrome Debilitante/inducido químicamente , Tejido Adiposo Blanco/metabolismo , Tejido Adiposo Blanco/patología , Administración Oral , Ácidos Aminoisobutíricos/metabolismo , Animales , Carnitina/administración & dosificación , Ácidos Grasos/metabolismo , Hepatocitos/metabolismo , Hepatocitos/ultraestructura , Cuerpos Cetónicos/sangre , Cuerpos Cetónicos/metabolismo , Leptina/análisis , Leptina/metabolismo , Lipodistrofia/sangre , Lipodistrofia/metabolismo , Hígado/metabolismo , Hígado/fisiopatología , Hepatopatías/sangre , Hepatopatías/metabolismo , Masculino , Ratones , Inhibidores de la Transcriptasa Inversa/efectos adversos , Estavudina/efectos adversos , Estearoil-CoA Desaturasa/metabolismo , Transaminasas/sangre , Transaminasas/metabolismo , Complejo Vitamínico B/administración & dosificación , Síndrome Debilitante/metabolismo
20.
Clin Gastroenterol Hepatol ; 5(5): 630-5, 2007 May.
Artículo en Inglés | MEDLINE | ID: mdl-17336594

RESUMEN

BACKGROUND & AIMS: A genetic dimorphism encodes for either alanine (Ala) or valine (Val) in the mitochondrial targeting sequence of manganese superoxide dismutase (MnSOD), and modulates its mitochondrial import and activity. It has been shown that the presence of at least 1 Ala-encoding allele is more frequent in alcoholic patients with cirrhosis than in controls, and increases the risks of liver iron overload, hepatocellular carcinoma (HCC), and death in these patients. The aim of this study was to assess the influence of the Ala-9Val MnSOD dimorphism on the same parameters and events in hepatitis C virus (HCV)-infected patients. METHODS: We compared the MnSOD genotypic distributions in 94 control subjects and 165 patients with HCV-related cirrhosis. Patients were included at the time of liver biopsy examination showing cirrhosis, and were followed-up prospectively. The mean time of follow-up evaluation was 85.7 +/- 43.8 months. RESULTS: The distribution of MnSOD genotypes in HCV-infected patients (25% Val/Val homozygotes, 44% Ala/Val heterozygotes, and 31% Ala/Ala homozygotes) did not differ from the distribution in controls (P = .3). MnSOD genotypes did not influence survival (log-rank test, P = .6; relative risk 1.0; 95% confidence interval, 0.6-1.6) or the risk of HCC occurrence (log-rank test, P = .3; relative risk, 1.1; 95% confidence interval, 0.8-1.6). CONCLUSIONS: Contrary to previous findings in French alcoholic patients, the Ala-encoding MnSOD allele is represented equally in controls and patients with HCV-related cirrhosis, and it does not significantly influence the risks of liver iron overload, HCC, or death in these patients.


Asunto(s)
Carcinoma Hepatocelular/genética , Hepatitis C/genética , Hepatitis C/mortalidad , Sobrecarga de Hierro/genética , Neoplasias Hepáticas/genética , Superóxido Dismutasa/genética , Adulto , Anciano , Carcinoma Hepatocelular/epidemiología , Estudios de Casos y Controles , Femenino , Heterocigoto , Homocigoto , Humanos , Incidencia , Neoplasias Hepáticas/epidemiología , Masculino , Persona de Mediana Edad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...