Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
NPJ Microgravity ; 10(1): 44, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38570513

RESUMEN

Exploiting the symbiotic interaction between crops and nitrogen-fixing bacteria is a simple and ecological method to promote plant growth in prospective extraterrestrial human outposts. In this study, we performed an RNA-seq analysis to investigate the adaptation of the legume symbiont Paraburkholderia phymatum STM815T to simulated microgravity (s0-g) at the transcriptome level. The results revealed a drastic effect on gene expression, with roughly 23% of P. phymatum genes being differentially regulated in s0-g. Among those, 951 genes were upregulated and 858 downregulated in the cells grown in s0-g compared to terrestrial gravity (1 g). Several genes involved in posttranslational modification, protein turnover or chaperones encoding were upregulated in s0-g, while those involved in translation, ribosomal structure and biosynthesis, motility or inorganic ions transport were downregulated. Specifically, the whole phm gene cluster, previously bioinformatically predicted to be involved in the production of a hypothetical malleobactin-like siderophore, phymabactin, was 20-fold downregulated in microgravity. By constructing a mutant strain (ΔphmJK) we confirmed that the phm gene cluster codes for the only siderophore secreted by P. phymatum as assessed by the complete lack of iron chelating activity of the P. phymatum ΔphmJK mutant on chrome azurol S (CAS) agar plates. These results not only provide a deeper understanding of the physiology of symbiotic organisms exposed to space-like conditions, but also increase our knowledge of iron acquisition mechanisms in rhizobia.

2.
Microbiol Spectr ; 11(4): e0162223, 2023 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-37439699

RESUMEN

Paraburkholderia sabiae LMG24235 is a nitrogen-fixing betaproteobacterium originally isolated from a root nodule of Mimosa caesalpiniifolia in Brazil. We show here that this strain effectively kills strains from several bacterial families (Burkholderiaceae, Pseudomonadaceae, Enterobacteriaceae) which include important plant pathogens in a contact-dependent manner. De novo assembly of the first complete genome of P. sabiae using long sequencing reads and subsequent annotation revealed two gene clusters predicted to encode type VI secretion systems (T6SS), which we named T6SS-1 and T6SS-3 according to previous classification methods (G. Shalom, J. G. Shaw, and M. S. Thomas, Microbiology, 153:2689-2699, 2007, https://doi.org/10.1099/mic.0.2007/006585-0). We created P. sabiae with mutations in each of the two T6SS gene clusters that abrogated their function, and the T6SS-1 mutant was no longer able to outcompete other strains in a contact-dependent manner. Notably, our analysis revealed that T6SS-1 is essential for competition against several important plant pathogens in vitro, including Burkholderia plantarii, Ralstonia solanacearum, Pseudomonas syringae, and Pectobacterium carotovorum. The 9-log reduction in P. syringae cells in the presence of P. sabiae was particularly remarkable. Importantly, in an in vivo assay, P. sabiae was able to protect potato tubers from bacterial soft rot disease caused by P. carotovorum, and this protection was partly dependent on T6SS-1. IMPORTANCE Rhizobia often display additional beneficial traits such as the production of plant hormones and the acquisition of limited essential nutrients that improve plant growth and enhance plant yields. Here, we show that the rhizobial strain P. sabiae antagonizes important phytopathogens such as P. carotovorum, P. syringae, and R. solanacearum and that this effect is due to contact-dependent killing mediated by one of two T6SS systems identified in the complete, de novo assembled genome sequence of P. sabiae. Importantly, co-inoculation of Solanum tuberosum tubers with P. sabiae also resulted in a drastic reduction of soft rot caused by P. carotovorum in an in vivo model system. This result highlights the protective potential of P. sabiae against important bacterial plant diseases, which makes it a valuable candidate for application as a biocontrol agent. It also emphasizes the particular potential of rhizobial inoculants that combine several beneficial effects such as plant growth promotion and biocontrol for sustainable agriculture.


Asunto(s)
Burkholderiaceae , Sistemas de Secreción Tipo VI , Humanos , Sistemas de Secreción Tipo VI/genética , Burkholderiaceae/genética , Pectobacterium carotovorum , Enterobacteriaceae , Enfermedades de las Plantas/microbiología
3.
Front Plant Sci ; 13: 991548, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36247538

RESUMEN

Rhizobia fix nitrogen within root nodules of host plants where nitrogenase expression is strictly controlled by its key regulator NifA. We recently discovered that in nodules infected by the beta-rhizobial strain Paraburkholderia phymatum STM815, NifA controls expression of two bacterial auxin synthesis genes. Both the iaaM and iaaH transcripts, as well as the metabolites indole-acetamide (IAM) and indole-3-acetic acid (IAA) showed increased abundance in nodules occupied by a nifA mutant compared to wild-type nodules. Here, we document the structural changes that a P. phymatum nifA mutant induces in common bean (Phaseolus vulgaris) nodules, eventually leading to hypernodulation. To investigate the role of the P. phymatum iaaMH genes during symbiosis, we monitored their expression in presence and absence of NifA over different stages of the symbiosis. The iaaMH genes were found to be under negative control of NifA in all symbiotic stages. While a P. phymatum iaaMH mutant produced the same number of nodules and nitrogenase activity as the wild-type strain, the nifA mutant produced more nodules than the wild-type that clustered into regularly-patterned root zones. Mutation of the iaaMH genes in a nifA mutant background reduced the presence of these nodule clusters on the root. We further show that the P. phymatum iaaMH genes are located in a region of the symbiotic plasmid with a significantly lower GC content and exhibit high similarity to two genes of the IAM pathway often used by bacterial phytopathogens to deploy IAA as a virulence factor. Overall, our data suggest that the increased abundance of rhizobial auxin in the non-fixing nifA mutant strain enables greater root infection rates and a role for bacterial auxin production in the control of early stage symbiotic interactions.

4.
Int J Mol Sci ; 23(9)2022 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-35562951

RESUMEN

Burkholderia cenocepacia is an opportunistic pathogen that can lead to severe infections in patients suffering from cystic fibrosis (CF) and chronic granulomatous disease. Being an obligate aerobe, B. cenocepacia is unable to grow in the absence of oxygen. In this study, we show that the CF isolate B. cenocepacia H111 can survive in the absence of oxygen. Using a transposon sequencing (Tn-seq) approach, we identified 71 fitness determinants involved in anoxic survival, including a Crp-Fnr family transcriptional regulatory gene (anr2), genes coding for the sensor kinase RoxS and its response regulator RoxR, the sigma factor for flagella biosynthesis (FliA) and subunits of a cytochrome bd oxidase (CydA, CydB and the potentially novel subunit CydP). Individual knockouts of these fitness determinants significantly reduced anoxic survival, and inactivation of both anr copies is shown to be lethal under anoxic conditions. We also show that the two-component system RoxS/RoxR and FliA are important for virulence and swarming/swimming, respectively.


Asunto(s)
Infecciones por Burkholderia , Burkholderia cenocepacia , Fibrosis Quística , Burkholderia cenocepacia/fisiología , Humanos , Hipoxia , Oxígeno , Virulencia/genética
5.
Front Plant Sci ; 12: 699590, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34394152

RESUMEN

Paraburkholderia phymatum STM815, a rhizobial strain of the Burkholderiaceae family, is able to nodulate a broad range of legumes including the agriculturally important Phaseolus vulgaris (common bean). P. phymatum harbors two type VI Secretion Systems (T6SS-b and T6SS-3) in its genome that contribute to its high interbacterial competitiveness in vitro and in infecting the roots of several legumes. In this study, we show that P. phymatum T6SS-b is found in the genomes of several soil-dwelling plant symbionts and that its expression is induced by the presence of citrate and is higher at 20/28°C compared to 37°C. Conversely, T6SS-3 shows homologies to T6SS clusters found in several pathogenic Burkholderia strains, is more prominently expressed with succinate during stationary phase and at 37°C. In addition, T6SS-b expression was activated in the presence of germinated seeds as well as in P. vulgaris and Mimosa pudica root nodules. Phenotypic analysis of selected deletion mutant strains suggested a role of T6SS-b in motility but not at later stages of the interaction with legumes. In contrast, the T6SS-3 mutant was not affected in any of the free-living and symbiotic phenotypes examined. Thus, P. phymatum T6SS-b is potentially important for the early infection step in the symbiosis with legumes.

6.
Metabolites ; 11(7)2021 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-34357349

RESUMEN

Paraburkholderia phymatum STM815 is a nitrogen-fixing endosymbiont that nodulate the agriculturally important Phaseolus vulgaris and several other host plants. We previously showed that the nodules induced by a STM815 mutant of the gene encoding the master regulator of nitrogen fixation NifA showed no nitrogenase activity (Fix-) and increased in number compared to P. vulgaris plants infected with the wild-type strain. To further investigate the role of NifA during symbiosis, nodules from P. phymatum wild-type and nifA mutants were collected and analyzed by metabolomics and dual RNA-Sequencing, allowing us to investigate both host and symbiont transcriptome. Using this approach, several metabolites' changes could be assigned to bacterial or plant responses. While the amount of the C4-dicarboxylic acid succinate and of several amino acids was lower in Fix- nodules, the level of indole-acetamide (IAM) and brassinosteroids increased. Transcriptome analysis identified P. phymatum genes involved in transport of C4-dicarboxylic acids, carbon metabolism, auxin metabolism and stress response to be differentially expressed in absence of NifA. Furthermore, P. vulgaris genes involved in autoregulation of nodulation (AON) are repressed in nodules in absence of NifA potentially explaining the hypernodulation phenotype of the nifA mutant. These results and additional validation experiments suggest that P. phymatum STM815 NifA is not only important to control expression of nitrogenase and related enzymes but is also involved in regulating its own auxin production and stress response. Finally, our data indicate that P. vulgaris does sanction the nifA nodules by depleting the local carbon allocation rather than by mounting a strong systemic immune response to the Fix- rhizobia.

7.
Cells ; 10(4)2021 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-33924023

RESUMEN

Homocitrate is an essential component of the iron-molybdenum cofactor of nitrogenase, the bacterial enzyme that catalyzes the reduction of dinitrogen (N2) to ammonia. In nitrogen-fixing and nodulating alpha-rhizobia, homocitrate is usually provided to bacteroids in root nodules by their plant host. In contrast, non-nodulating free-living diazotrophs encode the homocitrate synthase (NifV) and reduce N2 in nitrogen-limiting free-living conditions. Paraburkholderia phymatum STM815 is a beta-rhizobial strain, which can enter symbiosis with a broad range of legumes, including papilionoids and mimosoids. In contrast to most alpha-rhizobia, which lack nifV, P. phymatum harbors a copy of nifV on its symbiotic plasmid. We show here that P. phymatum nifV is essential for nitrogenase activity both in root nodules of papilionoid plants and in free-living growth conditions. Notably, nifV was dispensable in nodules of Mimosa pudica despite the fact that the gene was highly expressed during symbiosis with all tested papilionoid and mimosoid plants. A metabolome analysis of papilionoid and mimosoid root nodules infected with the P. phymatum wild-type strain revealed that among the approximately 400 measured metabolites, homocitrate and other metabolites involved in lysine biosynthesis and degradation have accumulated in all plant nodules compared to uninfected roots, suggesting an important role of these metabolites during symbiosis.


Asunto(s)
Proteínas Bacterianas/metabolismo , Burkholderiaceae/enzimología , Fabaceae/microbiología , Nitrogenasa/metabolismo , Oxo-Ácido-Liasas/metabolismo , Simbiosis , Burkholderiaceae/genética , Genoma Bacteriano , Proteínas Fluorescentes Verdes/metabolismo , Interacciones Huésped-Patógeno , Funciones de Verosimilitud , Metaboloma , Filogenia , Nódulos de las Raíces de las Plantas/metabolismo , Nódulos de las Raíces de las Plantas/microbiología
8.
J Bacteriol ; 202(23)2020 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-32900830

RESUMEN

Burkholderia thailandensis is a soil saprophyte that is closely related to the pathogen Burkholderia pseudomallei, the etiological agent of melioidosis in humans. The environmental niches and infection sites occupied by these bacteria are thought to contain only limited concentrations of oxygen, where they can generate energy via denitrification. However, knowledge of the underlying molecular basis of the denitrification pathway in these bacteria is scarce. In this study, we employed a transposon sequencing (Tn-Seq) approach to identify genes conferring a fitness benefit for anaerobic growth of B. thailandensis Of the 180 determinants identified, several genes were shown to be required for growth under denitrifying conditions: the nitrate reductase operon narIJHGK2K1, the aniA gene encoding a previously unknown nitrite reductase, and the petABC genes encoding a cytochrome bc1, as well as three novel regulators that control denitrification. Our Tn-Seq data allowed us to reconstruct the entire denitrification pathway of B. thailandensis and shed light on its regulation. Analyses of growth behaviors combined with measurements of denitrification metabolites of various mutants revealed that nitrate reduction provides sufficient energy for anaerobic growth, an important finding in light of the fact that some pathogenic Burkholderia species can use nitrate as a terminal electron acceptor but are unable to complete denitrification. Finally, we demonstrated that a nitrous oxide reductase mutant is not affected for anaerobic growth but is defective in biofilm formation and accumulates N2O, which may play a role in the dispersal of B. thailandensis biofilms.IMPORTANCEBurkholderia thailandensis is a soil-dwelling saprophyte that is often used as surrogate of the closely related pathogen Burkholderia pseudomallei, the causative agent of melioidosis and a classified biowarfare agent. Both organisms are adapted to grow under oxygen-limited conditions in rice fields by generating energy through denitrification. Microoxic growth of B. pseudomallei is also considered essential for human infections. Here, we have used a Tn-Seq approach to identify the genes encoding the enzymes and regulators required for growth under denitrifying conditions. We show that a mutant that is defective in the conversion of N2O to N2, the last step in the denitrification process, is unaffected in microoxic growth but is severely impaired in biofilm formation, suggesting that N2O may play a role in biofilm dispersal. Our study identified novel targets for the development of therapeutic agents to treat meliodiosis.


Asunto(s)
Burkholderia/genética , Burkholderia/metabolismo , Genoma Bacteriano , Burkholderia/crecimiento & desarrollo , Mapeo Cromosómico , Elementos Transponibles de ADN , Desnitrificación , Regulación Bacteriana de la Expresión Génica , Mutagénesis Insercional , Nitratos/metabolismo , Operón
9.
Front Microbiol ; 11: 1681, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32793157

RESUMEN

Pseudomonas aeruginosa is an opportunistic human pathogen and a leading cause of nosocomial infections. Due to its high intrinsic and adaptive resistance to antibiotics, infections caused by this organism are difficult to treat and new therapeutic options are urgently needed. Novel peptidomimetic antibiotics that target outer membrane (OM) proteins have shown great promise for the treatment of P. aeruginosa infections. Here, we have performed genome-wide mutant fitness profiling using transposon sequencing (Tn-Seq) to identify resistance determinants against the recently described peptidomimetics L27-11, compounds 3 and 4, as well as polymyxin B2 (PMB) and colistin (COL). We identified a set of 13 core genes that affected resistance to all tested antibiotics, many of which encode enzymes involved in the modification of the lipopolysaccharide (LPS) or control their expression. We also identified fitness determinants that are specific for antibiotics with similar structures that may indicate differences in their modes of action. These results provide new insights into resistance mechanisms against these peptide antibiotics, which will be important for future clinical development and efforts to further improve their potency.

10.
Front Microbiol ; 11: 1600, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32765457

RESUMEN

Paraburkholderia phymatum is a rhizobial strain that belongs to the beta-proteobacteria, a group known to form efficient nitrogen-fixing symbioses within root nodules of several legumes, including the agriculturally important common bean. The establishment of the symbiosis requires the exchange of rhizobial and plant signals such as lipochitooligosaccharides (Nod factors), polysaccharides, and flavonoids. Inspection of the genome of the competitive rhizobium P. phymatum revealed the presence of several polysaccharide biosynthetic gene clusters. In this study, we demonstrate that bceN, a gene encoding a GDP-D-mannose 4,6-dehydratase, which is involved in the production of the exopolysaccharide cepacian, an important component of biofilms produced by closely related opportunistic pathogens of the Burkholderia cepacia complex (Bcc), is required for efficient plant colonization. Wild-type P. phymatum was shown to produce cepacian while a bceN mutant did not. Additionally, the bceN mutant produced a significantly lower amount of biofilm and formed less root nodules compared to the wild-type strain with Phaseolus vulgaris as host plant. Finally, expression of the operon containing bceN was induced by the presence of germinated P. vulgaris seeds under nitrogen limiting conditions suggesting a role of this polysaccharide in the establishment of this ecologically important symbiosis.

12.
Nature ; 576(7787): 452-458, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31645764

RESUMEN

There is an urgent need for new antibiotics against Gram-negative pathogens that are resistant to carbapenem and third-generation cephalosporins, against which antibiotics of last resort have lost most of their efficacy. Here we describe a class of synthetic antibiotics inspired by scaffolds derived from natural products. These chimeric antibiotics contain a ß-hairpin peptide macrocycle linked to the macrocycle found in the polymyxin and colistin family of natural products. They are bactericidal and have a mechanism of action that involves binding to both lipopolysaccharide and the main component (BamA) of the ß-barrel folding complex (BAM) that is required for the folding and insertion of ß-barrel proteins into the outer membrane of Gram-negative bacteria. Extensively optimized derivatives show potent activity against multidrug-resistant pathogens, including all of the Gram-negative members of the ESKAPE pathogens1. These derivatives also show favourable drug properties and overcome colistin resistance, both in vitro and in vivo. The lead candidate is currently in preclinical toxicology studies that-if successful-will allow progress into clinical studies that have the potential to address life-threatening infections by the Gram-negative pathogens, and thus to resolve a considerable unmet medical need.


Asunto(s)
Antibacterianos/química , Antibacterianos/farmacología , Farmacorresistencia Microbiana , Bacterias Gramnegativas/efectos de los fármacos , Peptidomiméticos/química , Peptidomiméticos/farmacología , Animales , Antibacterianos/efectos adversos , Proteínas de la Membrana Bacteriana Externa/química , Proteínas de la Membrana Bacteriana Externa/genética , Productos Biológicos/química , Descubrimiento de Drogas , Farmacorresistencia Microbiana/efectos de los fármacos , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Fluorescencia , Bacterias Gramnegativas/genética , Bacterias Gramnegativas/patogenicidad , Humanos , Lipopolisacáridos/química , Compuestos Macrocíclicos/efectos adversos , Compuestos Macrocíclicos/química , Compuestos Macrocíclicos/farmacología , Masculino , Ratones , Pruebas de Sensibilidad Microbiana , Viabilidad Microbiana/efectos de los fármacos , Microscopía Electrónica de Transmisión , Modelos Moleculares , Mutación , Peptidomiméticos/efectos adversos , Etiquetas de Fotoafinidad
13.
Front Microbiol ; 10: 924, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31134003

RESUMEN

The adaptation of rhizobia from the free-living state in soil to the endosymbiotic state comprises several physiological changes in order to cope with the extremely low oxygen availability (microoxia) within nodules. To uncover cellular functions required for bacterial adaptation to microoxia directly at the protein level, we applied a systems biology approach on the key rhizobial model and soybean endosymbiont Bradyrhizobium diazoefficiens USDA 110 (formerly B. japonicum USDA 110). As a first step, the complete genome of B. diazoefficiens 110spc4, the model strain used in most prior functional genomics studies, was sequenced revealing a deletion of a ~202 kb fragment harboring 223 genes and several additional differences, compared to strain USDA 110. Importantly, the deletion strain showed no significantly different phenotype during symbiosis with several host plants, reinforcing the value of previous OMICS studies. We next performed shotgun proteomics and detected 2,900 and 2,826 proteins in oxically and microoxically grown cells, respectively, largely expanding our knowledge about the inventory of rhizobial proteins expressed in microoxia. A set of 62 proteins was significantly induced under microoxic conditions, including the two nitrogenase subunits NifDK, the nitrogenase reductase NifH, and several subunits of the high-affinity terminal cbb 3 oxidase (FixNOQP) required for bacterial respiration inside nodules. Integration with the previously defined microoxia-induced transcriptome uncovered a set of 639 genes or proteins uniquely expressed in microoxia. Finally, besides providing proteogenomic evidence for novelties, we also identified proteins with a regulation similar to that of FixK2: transcript levels of these protein-coding genes were significantly induced, while the corresponding protein abundance remained unchanged or was down-regulated. This suggested that, apart from fixK 2, additional B. diazoefficiens genes might be under microoxia-specific post-transcriptional control. This hypothesis was indeed confirmed for several targets (HemA, HemB, and ClpA) by immunoblot analysis.

14.
Sci Adv ; 4(11): eaau2634, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30443594

RESUMEN

With the increasing resistance of many Gram-negative bacteria to existing classes of antibiotics, identifying new paradigms in antimicrobial discovery is an important research priority. Of special interest are the proteins required for the biogenesis of the asymmetric Gram-negative bacterial outer membrane (OM). Seven Lpt proteins (LptA to LptG) associate in most Gram-negative bacteria to form a macromolecular complex spanning the entire envelope, which transports lipopolysaccharide (LPS) molecules from their site of assembly at the inner membrane to the cell surface, powered by adenosine 5'-triphosphate hydrolysis in the cytoplasm. The periplasmic protein LptA comprises the protein bridge across the periplasm, which connects LptB2FGC at the inner membrane to LptD/E anchored in the OM. We show here that the naturally occurring, insect-derived antimicrobial peptide thanatin targets LptA and LptD in the network of periplasmic protein-protein interactions required to assemble the Lpt complex, leading to the inhibition of LPS transport and OM biogenesis in Escherichia coli.


Asunto(s)
Péptidos Catiónicos Antimicrobianos/farmacología , Proteínas de la Membrana Bacteriana Externa/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Lipopolisacáridos/metabolismo , Proteínas de la Membrana Bacteriana Externa/química , Proteínas de la Membrana Bacteriana Externa/genética , Transporte Biológico Activo , Escherichia coli/efectos de los fármacos , Escherichia coli/crecimiento & desarrollo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Modelos Moleculares , Conformación Proteica
15.
High Throughput ; 7(2)2018 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-29783718

RESUMEN

Biological nitrogen fixation gives legumes a pronounced growth advantage in nitrogen-deprived soils and is of considerable ecological and economic interest. In exchange for reduced atmospheric nitrogen, typically given to the plant in the form of amides or ureides, the legume provides nitrogen-fixing rhizobia with nutrients and highly specialised root structures called nodules. To elucidate the molecular basis underlying physiological adaptations on a genome-wide scale, functional genomics approaches, such as transcriptomics, proteomics, and metabolomics, have been used. This review presents an overview of the different functional genomics approaches that have been performed on rhizobial symbiosis, with a focus on studies investigating the molecular mechanisms used by the bacterial partner to interact with the legume. While rhizobia belonging to the alpha-proteobacterial group (alpha-rhizobia) have been well studied, few studies to date have investigated this process in beta-proteobacteria (beta-rhizobia).

16.
Int J Mol Sci ; 19(4)2018 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-29614780

RESUMEN

RpoN (or σ54) is the key sigma factor for the regulation of transcription of nitrogen fixation genes in diazotrophic bacteria, which include α- and ß-rhizobia. Our previous studies showed that an rpoN mutant of the ß-rhizobial strain Paraburkholderia phymatum STM815T formed root nodules on Phaseolus vulgaris cv. Negro jamapa, which were unable to reduce atmospheric nitrogen into ammonia. In an effort to further characterize the RpoN regulon of P. phymatum, transcriptomics was combined with a powerful metabolomics approach. The metabolome of P. vulgaris root nodules infected by a P. phymatumrpoN Fix- mutant revealed statistically significant metabolic changes compared to wild-type Fix⁺ nodules, including reduced amounts of chorismate and elevated levels of flavonoids. A transcriptome analysis on Fix- and Fix⁺ nodules-combined with a search for RpoN binding sequences in promoter regions of regulated genes-confirmed the expected control of σ54 on nitrogen fixation genes in nodules. The transcriptomic data also allowed us to identify additional target genes, whose differential expression was able to explain the observed metabolite changes in numerous cases. Moreover, the genes encoding the two-component regulatory system NtrBC were downregulated in root nodules induced by the rpoN mutant, and contained a putative RpoN binding motif in their promoter region, suggesting direct regulation. The construction and characterization of an ntrB mutant strain revealed impaired nitrogen assimilation in free-living conditions, as well as a noticeable symbiotic phenotype, as fewer but heavier nodules were formed on P. vulgaris roots.


Asunto(s)
Phaseolus/metabolismo , Phaseolus/microbiología , Transcriptoma/genética , Regulación Bacteriana de la Expresión Génica/genética , Metabolómica/métodos , Regiones Promotoras Genéticas/genética , Rhizobium/fisiología , Nódulos de las Raíces de las Plantas/metabolismo , Nódulos de las Raíces de las Plantas/microbiología , Simbiosis/genética , Simbiosis/fisiología
17.
Nat Commun ; 9(1): 1297, 2018 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-29602945

RESUMEN

Members of the diazeniumdiolate class of natural compounds show potential for drug development because of their antifungal, antibacterial, antiviral, and antitumor activities. Yet, their biosynthesis has remained elusive to date. Here, we identify a gene cluster directing the biosynthesis of the diazeniumdiolate compound fragin in Burkholderia cenocepacia H111. We provide evidence that fragin is a metallophore and that metal chelation is the molecular basis of its antifungal activity. A subset of the fragin biosynthetic genes is involved in the synthesis of a previously undescribed cell-to-cell signal molecule, valdiazen. RNA-Seq analyses reveal that valdiazen controls fragin biosynthesis and affects the expression of more than 100 genes. Homologs of the valdiazen biosynthesis genes are found in various bacteria, suggesting that valdiazen-like compounds may constitute a new class of signal molecules. We use structural information, in silico prediction of enzymatic functions and biochemical data to propose a biosynthesis route for fragin and valdiazen.


Asunto(s)
Compuestos Azo/metabolismo , Burkholderia cenocepacia/metabolismo , Antifúngicos/metabolismo , Antifúngicos/farmacología , Compuestos Azo/farmacología , Burkholderia cenocepacia/genética , Quelantes/metabolismo , Quelantes/farmacología , Homeostasis , Familia de Multigenes , Percepción de Quorum
18.
Methods Mol Biol ; 1673: 193-202, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29130174

RESUMEN

We used comparative proteome analysis to determine the target genes of the two quorum sensing (QS) circuits in the opportunistic pathogen Burkholderia cenocepacia: the N-acyl homoserine lactone (AHL)-based CepIR system and the BDSF (B urkholderia diffusible signal factor, cis-2-dodecenoic acid)-based RpfFR system. In this book chapter, we focus on the description of the practical procedure we currently use in the laboratory to perform a sensitive GeLC-MS/MS shotgun proteomics experiment; we also briefly describe the downstream bioinformatic data analysis.


Asunto(s)
Acil-Butirolactonas/metabolismo , Proteínas Bacterianas/metabolismo , Burkholderia cenocepacia/metabolismo , Ácidos Grasos Monoinsaturados/metabolismo , Proteómica/métodos , Proteínas Bacterianas/aislamiento & purificación , Membrana Celular/metabolismo , Electroforesis en Gel de Poliacrilamida , Espacio Intracelular/metabolismo , Espectrometría de Masas , Péptidos/aislamiento & purificación , Coloración y Etiquetado , Estadística como Asunto
19.
Genes (Basel) ; 8(12)2017 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-29244728

RESUMEN

Paraburkholderia phymatum belongs to the ß-subclass of proteobacteria. It has recently been shown to be able to nodulate and fix nitrogen in symbiosis with several mimosoid and papilionoid legumes. In contrast to the symbiosis of legumes with α-proteobacteria, very little is known about the molecular determinants underlying the successful establishment of this mutualistic relationship with ß-proteobacteria. In this study, we performed an RNA-sequencing (RNA-seq) analysis of free-living P. phymatum growing under nitrogen-replete and -limited conditions, the latter partially mimicking the situation in nitrogen-deprived soils. Among the genes upregulated under nitrogen limitation, we found genes involved in exopolysaccharides production and in motility, two traits relevant for plant root infection. Next, RNA-seq data of P. phymatum grown under free-living conditions and from symbiotic root nodules of Phaseolus vulgaris (common bean) were generated and compared. Among the genes highly upregulated during symbiosis, we identified-besides the nif gene cluster-an operon encoding a potential cytochrome o ubiquinol oxidase (Bphy_3646-49). Bean root nodules induced by a cyoB mutant strain showed reduced nitrogenase and nitrogen fixation abilities, suggesting an important role of the cytochrome for respiration inside the nodule. The analysis of mutant strains for the RNA polymerase transcription factor RpoN (σ54) and its activator NifA indicated that-similar to the situation in α-rhizobia-P. phymatum RpoN and NifA are key regulators during symbiosis with P. vulgaris.

20.
Front Microbiol ; 8: 1527, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28861050

RESUMEN

Members of the genus Burkholderia (ß-proteobacteria) have only recently been shown to be able to establish a nitrogen-fixing symbiosis with several legumes, which is why they are also referred to as ß-rhizobia. Therefore, very little is known about the competitiveness of these species to nodulate different legume host plants. In this study, we tested the competitiveness of several Burkholderia type strains (B. diazotrophica, B. mimosarum, B. phymatum, B. sabiae, B. symbiotica and B. tuberum) to nodulate four legumes (Phaseolus vulgaris, Macroptilium atropurpureum, Vigna unguiculata and Mimosa pudica) under our closely defined growth conditions. The assessment of nodule occupancy of these species on different legume host plants revealed that B. phymatum was the most competitive strain in the three papilionoid legumes (bean, cowpea and siratro), while B. mimosarum outcompeted the other strains in mimosa. The analysis of phenotypes known to play a role in nodulation competitiveness (motility, exopolysaccharide production) and additional in vitro competition assays among ß-rhizobial strains suggested that B. phymatum has the potential to be a very competitive legume symbiont.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...