Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Dev Cell ; 58(24): 2974-2991.e6, 2023 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-37977149

RESUMEN

The lung contains multiple progenitor cell types, but how their responses are choreographed during injury repair and whether this changes with age is poorly understood. We report that histone H3 lysine 9 di-methylation (H3K9me2), mediated by the methyltransferase G9a, regulates the dynamics of distal lung epithelial progenitor cells and that this regulation deteriorates with age. In aged mouse lungs, H3K9me2 loss coincided with fewer alveolar type 2 (AT2) cell progenitors and reduced alveolar regeneration but increased the frequency and activity of multipotent bronchioalveolar stem cells (BASCs) and bronchiolar progenitor club cells. H3K9me2 depletion in young mice decreased AT2 progenitor activity and impaired alveolar injury repair. Conversely, H3K9me2 depletion increased chromatin accessibility of bronchiolar cell genes, increased BASC frequency, and accelerated bronchiolar cell injury repair. These findings indicate that during aging, the epigenetic regulation that coordinates lung progenitor cells' regenerative responses becomes dysregulated, aiding our understanding of age-related susceptibility to lung disease.


Asunto(s)
Epigénesis Genética , Pulmón , Ratones , Animales , Pulmón/metabolismo , Cromatina/metabolismo , Metilación , Procesamiento Proteico-Postraduccional
2.
Cell Reprogram ; 25(1): 9-10, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36594927

RESUMEN

Short-term expression of Yamanaka factors early in life promotes epigenetic reprogramming and an increased healthy lifespan in a mouse model of accelerated aging.


Asunto(s)
Reprogramación Celular , Longevidad , Animales , Ratones , Epigénesis Genética , Rejuvenecimiento , Envejecimiento/genética
3.
JCI Insight ; 8(1)2023 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-36454643

RESUMEN

Dysfunction of alveolar epithelial type 2 cells (AEC2s), the facultative progenitors of lung alveoli, is implicated in pulmonary disease pathogenesis, highlighting the importance of human in vitro models. However, AEC2-like cells in culture have yet to be directly compared to their in vivo counterparts at single-cell resolution. Here, we performed head-to-head comparisons among the transcriptomes of primary (1°) adult human AEC2s, their cultured progeny, and human induced pluripotent stem cell-derived AEC2s (iAEC2s). We found each population occupied a distinct transcriptomic space with cultured AEC2s (1° and iAEC2s) exhibiting similarities to and differences from freshly purified 1° cells. Across each cell type, we found an inverse relationship between proliferative and maturation states, with preculture 1° AEC2s being most quiescent/mature and iAEC2s being most proliferative/least mature. Cultures of either type of human AEC2s did not generate detectable alveolar type 1 cells in these defined conditions; however, a subset of iAEC2s cocultured with fibroblasts acquired a transitional cell state described in mice and humans to arise during fibrosis or following injury. Hence, we provide direct comparisons of the transcriptomic programs of 1° and engineered AEC2s, 2 in vitro models that can be harnessed to study human lung health and disease.


Asunto(s)
Células Madre Pluripotentes Inducidas , Humanos , Animales , Ratones , Transcriptoma , Células Epiteliales Alveolares/metabolismo , Pulmón/patología , Alveolos Pulmonares/patología
4.
Cell Rep ; 35(5): 109055, 2021 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-33905739

RESUMEN

Coronavirus disease 2019 (COVID-19) is the latest respiratory pandemic caused by severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2). Although infection initiates in the proximal airways, severe and sometimes fatal symptoms of the disease are caused by infection of the alveolar type 2 (AT2) cells of the distal lung and associated inflammation. In this study, we develop primary human lung epithelial infection models to understand initial responses of proximal and distal lung epithelium to SARS-CoV-2 infection. Differentiated air-liquid interface (ALI) cultures of proximal airway epithelium and alveosphere cultures of distal lung AT2 cells are readily infected by SARS-CoV-2, leading to an epithelial cell-autonomous proinflammatory response with increased expression of interferon signaling genes. Studies to validate the efficacy of selected candidate COVID-19 drugs confirm that remdesivir strongly suppresses viral infection/replication. We provide a relevant platform for study of COVID-19 pathobiology and for rapid drug screening against SARS-CoV-2 and emergent respiratory pathogens.


Asunto(s)
Células Epiteliales Alveolares/virología , Tratamiento Farmacológico de COVID-19 , COVID-19/patología , Pulmón/virología , SARS-CoV-2/efectos de los fármacos , Adenosina Monofosfato/análogos & derivados , Adenosina Monofosfato/farmacología , Adulto , Anciano , Alanina/análogos & derivados , Alanina/farmacología , Células Epiteliales Alveolares/metabolismo , COVID-19/metabolismo , COVID-19/virología , Preescolar , Descubrimiento de Drogas/métodos , Células Epiteliales/virología , Epitelio/metabolismo , Epitelio/virología , Femenino , Fibroblastos/citología , Fibroblastos/metabolismo , Humanos , Pulmón/patología , Masculino , Persona de Mediana Edad , Modelos Biológicos , Cultivo Primario de Células , Mucosa Respiratoria/virología , SARS-CoV-2/fisiología , Replicación Viral/efectos de los fármacos
5.
Elife ; 102021 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-33527896

RESUMEN

Recent genomic and scRNA-seq analyses of melanoma demonstrated a lack of recurrent genetic drivers of metastasis, while identifying common transcriptional states correlating with invasion or drug resistance. To test whether transcriptional adaptation can drive melanoma progression, we made use of a zebrafish mitfa:BRAFV600E;tp53-/- model, in which malignant progression is characterized by minimal genetic evolution. We undertook an overexpression-screen of 80 epigenetic/transcriptional regulators and found neural crest-mesenchyme developmental regulator SATB2 to accelerate aggressive melanoma development. Its overexpression induces invadopodia formation and invasion in zebrafish tumors and human melanoma cell lines. SATB2 binds and activates neural crest-regulators, including pdgfab and snai2. The transcriptional program induced by SATB2 overlaps with known MITFlowAXLhigh and AQP1+NGFR1high drug-resistant states and functionally drives enhanced tumor propagation and resistance to Vemurafenib in vivo. In summary, we show that melanoma transcriptional rewiring by SATB2 to a neural crest mesenchyme-like program can drive invasion and drug resistance in autochthonous tumors.


Asunto(s)
Resistencia a Antineoplásicos/genética , Proteínas de Unión a la Región de Fijación a la Matriz/metabolismo , Melanoma/genética , Invasividad Neoplásica/genética , Factores de Transcripción/metabolismo , Proteínas de Pez Cebra/metabolismo , Animales , Sistemas CRISPR-Cas , Línea Celular Tumoral , Modelos Animales de Enfermedad , Regulación Neoplásica de la Expresión Génica , Humanos , Proteínas de Unión a la Región de Fijación a la Matriz/genética , Melanoma/tratamiento farmacológico , Melanoma/metabolismo , Cresta Neural/citología , Factores de Transcripción/genética , Pez Cebra , Proteínas de Pez Cebra/genética
6.
Cancer Res ; 80(18): 3841-3854, 2020 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-32690724

RESUMEN

Inactivation of SMARCA4/BRG1, the core ATPase subunit of mammalian SWI/SNF complexes, occurs at very high frequencies in non-small cell lung cancers (NSCLC). There are no targeted therapies for this subset of lung cancers, nor is it known how mutations in BRG1 contribute to lung cancer progression. Using a combination of gain- and loss-of-function approaches, we demonstrate that deletion of BRG1 in lung cancer leads to activation of replication stress responses. Single-molecule assessment of replication fork dynamics in BRG1-deficient cells revealed increased origin firing mediated by the prelicensing protein, CDC6. Quantitative mass spectrometry and coimmunoprecipitation assays showed that BRG1-containing SWI/SNF complexes interact with RPA complexes. Finally, BRG1-deficient lung cancers were sensitive to pharmacologic inhibition of ATR. These findings provide novel mechanistic insight into BRG1-mutant lung cancers and suggest that their dependency on ATR can be leveraged therapeutically and potentially expanded to BRG1-mutant cancers in other tissues. SIGNIFICANCE: These findings indicate that inhibition of ATR is a promising therapy for the 10% of non-small cell lung cancer patients harboring mutations in SMARCA4/BRG1. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/80/18/3841/F1.large.jpg.


Asunto(s)
Proteínas de la Ataxia Telangiectasia Mutada/antagonistas & inhibidores , Carcinoma de Pulmón de Células no Pequeñas/genética , ADN Helicasas/genética , Eliminación de Gen , Neoplasias Pulmonares/genética , Proteínas Nucleares/genética , Factores de Transcripción/genética , Animales , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromosómicas no Histona , ADN Helicasas/deficiencia , Progresión de la Enfermedad , Femenino , Factores de Transcripción Forkhead , Edición Génica , Humanos , Inmunoprecipitación , Espectrometría de Masas , Ratones , Ratones Endogámicos C57BL , Ratones Desnudos , Proteínas Nucleares/deficiencia , Proteínas Nucleares/metabolismo , Análisis de Secuencia de ARN , Factores de Transcripción/deficiencia
7.
Sci Rep ; 9(1): 6479, 2019 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-31015509

RESUMEN

Lung epithelial cell damage and dysfunctional repair play a role in the development of lung disease. Effective repair likely requires the normal functioning of alveolar stem/progenitor cells. For example, we have shown in a mouse model of bronchopulmonary dysplasia (BPD) that mesenchymal stem cells (MSC) protect against hyperoxic lung injury at least in part by increasing the number of Epcam+ Sca-1+ distal lung epithelial cells. These cells are capable of differentiating into both small airway (CCSP+) and alveolar (SPC+) epithelial cells in three-dimensional (3D) organoid cultures. To further understand the interactions between MSC and distal lung epithelial cells, we added MSC to lung progenitor 3D cultures. MSC stimulated Epcam+ Sca-1+ derived organoid formation, increased alveolar differentiation and decreased self-renewal. MSC-conditioned media was sufficient to promote alveolar organoid formation, demonstrating that soluble factors secreted by MSC are likely responsible for the response. This work provides strong evidence of a direct effect of MSC-secreted factors on lung progenitor cell differentiation.


Asunto(s)
Diferenciación Celular , Células Madre Mesenquimatosas/metabolismo , Organoides/metabolismo , Células Epiteliales Alveolares/citología , Animales , Células Madre Mesenquimatosas/citología , Ratones , Ratones Transgénicos , Organoides/citología , Técnicas de Cultivo de Tejidos
9.
Am J Respir Cell Mol Biol ; 59(2): 237-245, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29447458

RESUMEN

Metastatic disease is the primary cause of death of patients with lung cancer, but the mouse models of lung adenocarcinoma do not accurately recapitulate the tumor microenvironment or metastatic disease observed in patients. In this study, we conditionally deleted E-cadherin in an autochthonous lung adenocarcinoma mouse model driven by activated oncogenic Kras and p53 loss. Loss of E-cadherin significantly accelerated lung adenocarcinoma progression and decreased survival of the mice. Kras;p53;E-cadherin mice had a 41% lung tumor burden, invasive grade 4 tumors, and a desmoplastic stroma just 8 weeks after tumor initiation. One hundred percent of the mice developed local metastases to the lymph nodes or chest wall, and 38% developed distant metastases to the liver or kidney. Lung adenocarcinoma cancer cell lines derived from these tumors also had high migratory rates. These studies demonstrate that the Kras;p53;E-cadherin mouse model better emulates the tumor microenvironment and metastases observed in patients with lung adenocarcinoma than previous models and may therefore be useful for studying metastasis and testing new lung cancer treatments in vivo.


Asunto(s)
Adenocarcinoma/patología , Cadherinas/metabolismo , Neoplasias Pulmonares/patología , Metástasis de la Neoplasia , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Adenocarcinoma/genética , Animales , Modelos Animales de Enfermedad , Neoplasias Hepáticas/patología , Neoplasias Pulmonares/genética , Ratones Endogámicos C57BL , Metástasis de la Neoplasia/genética , Proteínas Proto-Oncogénicas p21(ras)/genética
10.
Methods Mol Biol ; 1460: 73-82, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27492167

RESUMEN

The excessive accumulation of collagens (fibrosis) impairs the function of vital tissues and organs. Fibrosis is a hallmark of severe muscular dystrophies, such as the incurable Duchenne Muscular Dystrophy (DMD), where skeletal muscle is substituted by scar (fibrotic) tissue as disease advances. One of the major obstacles in increasing our ability to combat fibrosis-driven muscular dystrophy progression is that no optimal in vivo models of muscle fibrosis are currently available, limiting fibrosis research and the development of novel therapies. In this chapter we describe different experimental strategies to accelerate and enhance muscle fibrosis in vivo in the widely used animal model for DMD, the mdx mouse. Since excessive tissue scarring also hampers the normal regeneration process after muscle injury, we have extended these fibrogenic strategies to the muscle of normal (non-diseased) mice. These strategies will allow fibrosis induction and assessment in a wide array of genetically modified mouse lines in physiological and pathological conditions of muscle regeneration. They should eventually improve our ability to combat fibrosis and foster muscle regeneration in DMD.


Asunto(s)
Músculo Esquelético/patología , Músculo Esquelético/fisiología , Distrofia Muscular de Duchenne/patología , Regeneración , Animales , Cardiotoxinas/efectos adversos , Venenos de Crotálidos/efectos adversos , Modelos Animales de Enfermedad , Fibrosis , Inmunohistoquímica , Ratones , Ratones Endogámicos mdx , Fuerza Muscular , Músculo Esquelético/efectos de los fármacos
11.
Stem Cell Reports ; 4(6): 1046-60, 2015 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-25981413

RESUMEN

Preservation of cell identity is necessary for homeostasis of most adult tissues. This process is challenged every time a tissue undergoes regeneration after stress or injury. In the lethal Duchenne muscular dystrophy (DMD), skeletal muscle regenerative capacity declines gradually as fibrosis increases. Using genetically engineered tracing mice, we demonstrate that, in dystrophic muscle, specialized cells of muscular, endothelial, and hematopoietic origins gain plasticity toward a fibrogenic fate via a TGFß-mediated pathway. This results in loss of cellular identity and normal function, with deleterious consequences for regeneration. Furthermore, this fibrogenic process involves acquisition of a mesenchymal progenitor multipotent status, illustrating a link between fibrogenesis and gain of progenitor cell functions. As this plasticity also was observed in DMD patients, we propose that mesenchymal transitions impair regeneration and worsen diseases with a fibrotic component.


Asunto(s)
Plasticidad de la Célula , Músculo Esquelético/fisiología , Distrofia Muscular de Duchenne/patología , Regeneración/fisiología , Animales , Antígenos CD/genética , Antígenos CD/metabolismo , Células Cultivadas , Células Endoteliales/citología , Células Endoteliales/metabolismo , Fibrosis , Cadenas alfa de Integrinas/genética , Cadenas alfa de Integrinas/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos DBA , Ratones Transgénicos , Músculo Esquelético/citología , Músculo Esquelético/efectos de los fármacos , Mioblastos/citología , Mioblastos/efectos de los fármacos , Mioblastos/metabolismo , Molécula-1 de Adhesión Celular Endotelial de Plaqueta/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/genética , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Células Satélite del Músculo Esquelético/citología , Células Satélite del Músculo Esquelético/metabolismo , Transducción de Señal , Proteína Smad2/metabolismo , Proteína smad3/metabolismo , Factor de Crecimiento Transformador beta/genética , Factor de Crecimiento Transformador beta/metabolismo , Factor de Crecimiento Transformador beta/farmacología
12.
Skelet Muscle ; 4: 7, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25157321

RESUMEN

BACKGROUND: Fibrosis, an excessive collagen accumulation, results in scar formation, impairing function of vital organs and tissues. Fibrosis is a hallmark of muscular dystrophies, including the lethal Duchenne muscular dystrophy (DMD), which remains incurable. Substitution of muscle by fibrotic tissue also complicates gene/cell therapies for DMD. Yet, no optimal models to study muscle fibrosis are available. In the widely used mdx mouse model for DMD, extensive fibrosis develops in the diaphragm only at advanced adulthood, and at about two years of age in the 'easy-to-access' limb muscles, thus precluding fibrosis research and the testing of novel therapies. METHODS: We developed distinct experimental strategies, ranging from chronic exercise to increasing muscle damage on limb muscles of young mdx mice, by myotoxin injection, surgically induced trauma (laceration or denervation) or intramuscular delivery of profibrotic growth factors (such as TGFß). We also extended these approaches to muscle of normal non-dystrophic mice. RESULTS: These strategies resulted in advanced and enhanced muscle fibrosis in young mdx mice, which persisted over time, and correlated with reduced muscle force, thus mimicking the severe DMD phenotype. Furthermore, increased fibrosis was also obtained by combining these procedures in muscles of normal mice, mirroring aberrant repair after severe trauma. CONCLUSIONS: We have developed new and improved experimental strategies to accelerate and enhance muscle fibrosis in vivo. These strategies will allow rapidly assessing fibrosis in the easily accessible limb muscles of young mdx mice, without necessarily having to use old animals. The extension of these fibrogenic regimes to the muscle of non-dystrophic wild-type mice will allow fibrosis assessment in a wide array of pre-existing transgenic mouse lines, which in turn will facilitate understanding the mechanisms of fibrogenesis. These strategies should improve our ability to combat fibrosis-driven dystrophy progression and aberrant regeneration.

13.
Biomed Res Int ; 2014: 965631, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24877152

RESUMEN

Fibrosis is the aberrant deposition of extracellular matrix (ECM) components during tissue healing leading to loss of its architecture and function. Fibrotic diseases are often associated with chronic pathologies and occur in a large variety of vital organs and tissues, including skeletal muscle. In human muscle, fibrosis is most readily associated with the severe muscle wasting disorder Duchenne muscular dystrophy (DMD), caused by loss of dystrophin gene function. In DMD, skeletal muscle degenerates and is infiltrated by inflammatory cells and the functions of the muscle stem cells (satellite cells) become impeded and fibrogenic cells hyperproliferate and are overactivated, leading to the substitution of skeletal muscle with nonfunctional fibrotic tissue. Here, we review new developments in our understanding of the mechanisms leading to fibrosis in DMD and several recent advances towards reverting it, as potential treatments to attenuate disease progression.


Asunto(s)
Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Distrofia Muscular de Duchenne/metabolismo , Distrofia Muscular de Duchenne/patología , Células Satélite del Músculo Esquelético/metabolismo , Células Satélite del Músculo Esquelético/patología , Animales , Distrofina/metabolismo , Fibrosis , Humanos , Distrofia Muscular de Duchenne/genética
14.
Hum Mol Genet ; 23(5): 1237-49, 2014 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-24163134

RESUMEN

Duchenne muscular dystrophy (DMD) is the most common inherited neuromuscular disease, and is characterized by the lack of dystrophin, muscle wasting, increased transforming growth factor (TGF)-ß Smad-dependent signalling and fibrosis. Acting via the Mas receptor, angiotensin-1-7 [Ang-(1-7)], is part of the renin-angiotensin system, with the opposite effect to that of angiotensin II. We hypothesized that the Ang-(1-7)/Mas receptor axis might protect chronically damaged tissues as in skeletal muscle of the DMD mouse model mdx. Infusion or oral administration of Ang-(1-7) in mdx mice normalized skeletal muscle architecture, decreased local fibrosis and improved muscle function in vitro and in vivo. These positive effects were mediated by the inhibition of TGF-ß Smad signalling, which in turn led to reduction of the pro-fibrotic microRNA miR-21 concomitant with a reduction in the number of TCF4 expressing fibroblasts. Mdx mice infused with Mas antagonist (A-779) and mdx deficient for the Mas receptor showed highly deteriorated muscular architecture, increased fibrosis and TGF-ß signalling with diminished muscle strength. These results suggest that this novel compound Ang-(1-7) might be used to improve quality of life and delay death in individuals with DMD and this drug should be investigated in further pre-clinical trials.


Asunto(s)
Angiotensina I/farmacología , Fuerza Muscular/efectos de los fármacos , Distrofia Muscular de Duchenne/metabolismo , Fragmentos de Péptidos/farmacología , Transducción de Señal/efectos de los fármacos , Factor de Crecimiento Transformador beta/metabolismo , Angiotensina I/administración & dosificación , Animales , Modelos Animales de Enfermedad , Matriz Extracelular/metabolismo , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Fibrosis , Humanos , Masculino , Ratones , Ratones Endogámicos mdx , Ratones Noqueados , MicroARNs/genética , MicroARNs/metabolismo , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Distrofia Muscular de Duchenne/genética , Fragmentos de Péptidos/administración & dosificación , Receptores de Superficie Celular/antagonistas & inhibidores
15.
PLoS One ; 7(8): e43335, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22905258

RESUMEN

Regeneration of muscle fibers, lost during pathological muscle degeneration or after injuries, is sustained by the production of new myofibers by means of the satellite cells. Survival of the satellite cells is a critical requirement for efficient muscle reconstitution. Necdin, a member of the MAGE proteins family, is expressed in satellite cell-derived myogenic precursors during perinatal growth and in the adult upon activation during muscle regeneration, where it plays an important role both in myoblast differentiation and survival. We show here that necdin exerts its pro-survival activity by counteracting the action of the pro-apoptotic protein Cell Cycle Apoptosis Regulatory Protein (CCAR1/CARP1) that we have identified as a new molecular interactor of necdin by two-hybrid screening. Necdin is responsible for the maintenance of CCAR1 protein levels, by implementing its ubiquitination and degradation through the proteasome. Taken together, these data shed new light on the molecular mechanism of necdin anti-apoptotic activity in myogenesis.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/biosíntesis , Apoptosis , Proteínas de Ciclo Celular/biosíntesis , Regulación de la Expresión Génica , Mioblastos/citología , Proteínas del Tejido Nervioso/biosíntesis , Proteínas Nucleares/biosíntesis , Ubiquitina-Proteína Ligasas/biosíntesis , Animales , Diferenciación Celular , Supervivencia Celular , Biblioteca de Genes , Humanos , Ratones , Ratones Endogámicos C57BL , Desarrollo de Músculos , Músculos/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Células Satélite del Músculo Esquelético/citología , Técnicas del Sistema de Dos Híbridos
16.
Skelet Muscle ; 1(1): 21, 2011 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-21798099

RESUMEN

The repair process of damaged tissue involves the coordinated activities of several cell types in response to local and systemic signals. Following acute tissue injury, infiltrating inflammatory cells and resident stem cells orchestrate their activities to restore tissue homeostasis. However, during chronic tissue damage, such as in muscular dystrophies, the inflammatory-cell infiltration and fibroblast activation persists, while the reparative capacity of stem cells (satellite cells) is attenuated. Abnormal dystrophic muscle repair and its end stage, fibrosis, represent the final common pathway of virtually all chronic neurodegenerative muscular diseases. As our understanding of the pathogenesis of muscle fibrosis has progressed, it has become evident that the muscle provides a useful model for the regulation of tissue repair by the local microenvironment, showing interplay among muscle-specific stem cells, inflammatory cells, fibroblasts and extracellular matrix components of the mammalian wound-healing response. This article reviews the emerging findings of the mechanisms that underlie normal versus aberrant muscle-tissue repair.

17.
Oncol Rep ; 24(3): 741-5, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20664982

RESUMEN

Experimental studies have suggested that defective skeletal muscle regeneration could contribute to muscle wasting in cancer patients. However, data in humans are still lacking. In this study we aimed to assess the expression of the genes involved in muscle regeneration in gastric cancer patients. The RNA expression of the genes involved in muscle regeneration was assessed in the rectus abdominis muscle of patients with gastric cancer (n=30) and in age-matched control subjects (n=8). The Pax7 expression was significantly increased in the muscle of gastric cancer patients, either in the first stages of the disease or in stages IIIA and B. The increased expression was present both in stages IA and B and in stages II and III. The MyoD espression was also higher in the cancer patients than in the controls. However, the increased MyoD expression was present only in stages IA and B and not in the more advanced stages of the disease. The Myf5 expression, as well as that of the neonatal isoform of Myosin Heavy Chain (nMHC) did not differ significantly between the cancer patients and the controls. The necdin expression was negligible in healthy adult muscles and was significantly up-regulated in the muscle of gastric cancer patients. Its expression was highly increased in stages IA and B while it was similar to the control in stages II and III. The results of the present study show that in the skeletal muscle of gastric cancer patients, the expression of the genes involved in muscle regeneration is increased with respect to the controls.


Asunto(s)
Proteínas Musculares/genética , Atrofia Muscular/genética , ARN Mensajero/análisis , Recto del Abdomen/química , Regeneración/genética , Neoplasias Gástricas/complicaciones , Anciano , Biopsia , Estudios de Casos y Controles , Femenino , Regulación de la Expresión Génica , Humanos , Italia , Masculino , Persona de Mediana Edad , Atrofia Muscular/fisiopatología , Proteína MioD/genética , Factor 5 Regulador Miogénico/genética , Cadenas Pesadas de Miosina/genética , Estadificación de Neoplasias , Proteínas del Tejido Nervioso/genética , Proteínas Nucleares/genética , Factor de Transcripción PAX7/genética , Recto del Abdomen/fisiopatología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Neoplasias Gástricas/patología , Neoplasias Gástricas/fisiopatología
18.
J Cell Sci ; 122(Pt 8): 1119-25, 2009 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-19339547

RESUMEN

Skeletal muscles of subjects with advanced cancer undergo progressive wasting, referred to as cachexia. Cachexia is an important area for medical research because strategies proposed until now have yielded little benefit. We have recently identified necdin as a key player in fetal and postnatal physiological myogenesis and in muscle regeneration. Here we show that necdin is selectively expressed in muscles of cachetic mice and prove that its expression is causally linked to a protective response of the tissue against tumor-induced wasting, inhibition of myogenic differentiation and fiber regeneration. Necdin carries out this role mainly via interference with TNFalpha signaling at various levels, including regulation of expression of TNFR1 and p53, and regulation of the activity of caspase 3 and caspase 9. These data suggest that inhibition of muscle wasting using necdin is a feasible approach to treat cachexia in neoplastic patients.


Asunto(s)
Adenocarcinoma/metabolismo , Caquexia/prevención & control , Neoplasias del Colon/metabolismo , Músculo Esquelético/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Proteínas Nucleares/metabolismo , Adenocarcinoma/complicaciones , Adenocarcinoma/patología , Animales , Caquexia/etiología , Caquexia/metabolismo , Caquexia/patología , Caspasa 3/metabolismo , Caspasa 9/metabolismo , Diferenciación Celular , Línea Celular Tumoral , Neoplasias del Colon/complicaciones , Neoplasias del Colon/patología , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Músculo Esquelético/enzimología , Músculo Esquelético/patología , Proteínas del Tejido Nervioso/deficiencia , Proteínas del Tejido Nervioso/genética , Proteínas Nucleares/deficiencia , Proteínas Nucleares/genética , Receptores Tipo I de Factores de Necrosis Tumoral/metabolismo , Regeneración , Transducción de Señal , Factores de Tiempo , Factor de Necrosis Tumoral alfa/metabolismo , Proteína p53 Supresora de Tumor/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA