Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nature ; 624(7990): 173-181, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38030723

RESUMEN

In diploid organisms, biallelic gene expression enables the production of adequate levels of mRNA1,2. This is essential for haploinsufficient genes, which require biallelic expression for optimal function to prevent the onset of developmental disorders1,3. Whether and how a biallelic or monoallelic state is determined in a cell-type-specific manner at individual loci remains unclear. MSL2 is known for dosage compensation of the male X chromosome in flies. Here we identify a role of MSL2 in regulating allelic expression in mammals. Allele-specific bulk and single-cell analyses in mouse neural progenitor cells revealed that, in addition to the targets showing biallelic downregulation, a class of genes transitions from biallelic to monoallelic expression after MSL2 loss. Many of these genes are haploinsufficient. In the absence of MSL2, one allele remains active, retaining active histone modifications and transcription factor binding, whereas the other allele is silenced, exhibiting loss of promoter-enhancer contacts and the acquisition of DNA methylation. Msl2-knockout mice show perinatal lethality and heterogeneous phenotypes during embryonic development, supporting a role for MSL2 in regulating gene dosage. The role of MSL2 in preserving biallelic expression of specific dosage-sensitive genes sets the stage for further investigation of other factors that are involved in allelic dosage compensation in mammalian cells, with considerable implications for human disease.


Asunto(s)
Alelos , Regulación de la Expresión Génica , Ubiquitina-Proteína Ligasas , Animales , Femenino , Masculino , Ratones , Metilación de ADN , Compensación de Dosificación (Genética) , Desarrollo Embrionario , Elementos de Facilitación Genéticos , Haploinsuficiencia , Histonas/metabolismo , Ratones Noqueados , Regiones Promotoras Genéticas , Factores de Transcripción/metabolismo , Ubiquitina-Proteína Ligasas/deficiencia , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
2.
J Exp Med ; 219(9)2022 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-35938989

RESUMEN

The zebrafish has proven to be a valuable model organism for studying hematopoiesis, but relatively little is known about zebrafish immune cell development and functional diversity. Elucidating key aspects of zebrafish lymphocyte development and exploring the breadth of effector functions would provide valuable insight into the evolution of adaptive immunity. We performed single-cell RNA sequencing on ∼70,000 cells from the zebrafish marrow and thymus to establish a gene expression map of zebrafish immune cell development. We uncovered rich cellular diversity in the juvenile and adult zebrafish thymus, elucidated B- and T-cell developmental trajectories, and transcriptionally characterized subsets of hematopoietic stem and progenitor cells and early thymic progenitors. Our analysis permitted the identification of two dendritic-like cell populations and provided evidence in support of the existence of a pre-B cell state. Our results provide critical insights into the landscape of zebrafish immunology and offer a foundation for cellular and genetic studies.


Asunto(s)
Células Madre Hematopoyéticas , Pez Cebra , Animales , Hematopoyesis/genética , Células Madre Hematopoyéticas/metabolismo , Células Precursoras de Linfocitos B , Análisis de la Célula Individual , Timo , Pez Cebra/genética
3.
Nat Commun ; 12(1): 6212, 2021 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-34707105

RESUMEN

Noncommunicable diseases (NCDs) account for over 70% of deaths world-wide. Previous work has linked NCDs such as type 2 diabetes (T2D) to disruption of chromatin regulators. However, the exact molecular origins of these chronic conditions remain elusive. Here, we identify the H4 lysine 16 acetyltransferase MOF as a critical regulator of central carbon metabolism. High-throughput metabolomics unveil a systemic amino acid and carbohydrate imbalance in Mof deficient mice, manifesting in T2D predisposition. Oral glucose tolerance testing (OGTT) reveals defects in glucose assimilation and insulin secretion in these animals. Furthermore, Mof deficient mice are resistant to diet-induced fat gain due to defects in glucose uptake in adipose tissue. MOF-mediated H4K16ac deposition controls expression of the master regulator of glucose metabolism, Pparg and the entire downstream transcriptional network. Glucose uptake and lipid storage can be reconstituted in MOF-depleted adipocytes in vitro by ectopic Glut4 expression, PPARγ agonist thiazolidinedione (TZD) treatment or SIRT1 inhibition. Hence, chronic imbalance in H4K16ac promotes a destabilisation of metabolism triggering the development of a metabolic disorder, and its maintenance provides an unprecedented regulatory epigenetic mechanism controlling diet-induced obesity.


Asunto(s)
Carbono/metabolismo , Dieta Alta en Grasa/efectos adversos , Histonas/metabolismo , Lisina/metabolismo , Obesidad/etiología , Acetilación , Adipocitos/metabolismo , Tejido Adiposo/metabolismo , Aminoácidos/metabolismo , Animales , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Regulación de la Expresión Génica , Predisposición Genética a la Enfermedad/genética , Glucosa/metabolismo , Transportador de Glucosa de Tipo 4/genética , Transportador de Glucosa de Tipo 4/metabolismo , Haploinsuficiencia , Histona Acetiltransferasas/genética , Histona Acetiltransferasas/metabolismo , Metabolismo de los Lípidos , Ratones , Obesidad/genética , Obesidad/metabolismo , PPAR gamma/genética , PPAR gamma/metabolismo
4.
Sci Adv ; 7(32)2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34362741

RESUMEN

Hematopoietic stem cells (HSCs) are able to reconstitute the bone marrow while retaining their self-renewal property. Individual HSCs demonstrate heterogeneity in their repopulating capacities. Here, we found that the levels of the histone acetyltransferase MOF (males absent on the first) and its target modification histone H4 lysine 16 acetylation are heterogeneous among HSCs and influence their proliferation capacities. The increased proliferative capacities of MOF-depleted cells are linked to their expression of CD93. The CD93+ HSC subpopulation simultaneously shows transcriptional features of quiescent HSCs and functional features of active HSCs. CD93+ HSCs were expanded and exhibited an enhanced proliferative advantage in Mof +/- animals reminiscent of a premalignant state. Accordingly, low MOF and high CD93 levels correlate with poor survival and increased proliferation capacity in leukemia. Collectively, our study indicates H4K16ac as an important determinant for HSC heterogeneity, which is linked to the onset of monocytic disorders.

5.
Sci Adv ; 6(21): eaaz4815, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32671208

RESUMEN

Self-renewal and differentiation of hematopoietic stem cells (HSCs) are orchestrated by the combinatorial action of transcription factors and epigenetic regulators. Here, we have explored the mechanism by which histone H4 lysine 16 acetyltransferase MOF regulates erythropoiesis. Single-cell RNA sequencing and chromatin immunoprecipitation sequencing uncovered that MOF influences erythroid trajectory by dynamic recruitment to chromatin and its haploinsufficiency causes accumulation of a transient HSC population. A regulatory network consisting of MOF, RUNX1, and GFI1B is critical for erythroid fate commitment. GFI1B acts as a Mof activator which is necessary and sufficient for cell type-specific induction of Mof expression. Plasticity of Mof-depleted HSCs can be rescued by expression of a downstream effector, Gata1, or by rebalancing acetylation via a histone deacetylase inhibitor. Accurate timing and dosage of Mof expression act as a rheostat for the feedforward transcription factor network that safeguards progression along the erythroid fate.

6.
Nature ; 544(7648): 115-119, 2017 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-28355180

RESUMEN

Transposable elements are viewed as 'selfish genetic elements', yet they contribute to gene regulation and genome evolution in diverse ways. More than half of the human genome consists of transposable elements. Alu elements belong to the short interspersed nuclear element (SINE) family of repetitive elements, and with over 1 million insertions they make up more than 10% of the human genome. Despite their abundance and the potential evolutionary advantages they confer, Alu elements can be mutagenic to the host as they can act as splice acceptors, inhibit translation of mRNAs and cause genomic instability. Alu elements are the main targets of the RNA-editing enzyme ADAR and the formation of Alu exons is suppressed by the nuclear ribonucleoprotein HNRNPC, but the broad effect of massive secondary structures formed by inverted-repeat Alu elements on RNA processing in the nucleus remains unknown. Here we show that DHX9, an abundant nuclear RNA helicase, binds specifically to inverted-repeat Alu elements that are transcribed as parts of genes. Loss of DHX9 leads to an increase in the number of circular-RNA-producing genes and amount of circular RNAs, translational repression of reporters containing inverted-repeat Alu elements, and transcriptional rewiring (the creation of mostly nonsensical novel connections between exons) of susceptible loci. Biochemical purifications of DHX9 identify the interferon-inducible isoform of ADAR (p150), but not the constitutively expressed ADAR isoform (p110), as an RNA-independent interaction partner. Co-depletion of ADAR and DHX9 augments the double-stranded RNA accumulation defects, leading to increased circular RNA production, revealing a functional link between these two enzymes. Our work uncovers an evolutionarily conserved function of DHX9. We propose that it acts as a nuclear RNA resolvase that neutralizes the immediate threat posed by transposon insertions and allows these elements to evolve as tools for the post-transcriptional regulation of gene expression.


Asunto(s)
Elementos Alu/genética , ARN Helicasas DEAD-box/metabolismo , Genoma Humano/genética , Secuencias Invertidas Repetidas/genética , Proteínas de Neoplasias/metabolismo , Edición de ARN/genética , ARN/genética , ARN/metabolismo , Adenosina Desaminasa/química , Adenosina Desaminasa/deficiencia , Adenosina Desaminasa/genética , Adenosina Desaminasa/aislamiento & purificación , Adenosina Desaminasa/metabolismo , Animales , Línea Celular , ARN Helicasas DEAD-box/deficiencia , ARN Helicasas DEAD-box/genética , Evolución Molecular , Exones/genética , Regulación de la Expresión Génica , Genes Reporteros/genética , Células HEK293 , Humanos , Masculino , Ratones , Mutagénesis/genética , Proteínas de Neoplasias/deficiencia , Proteínas de Neoplasias/genética , Conformación de Ácido Nucleico , Unión Proteica , Biosíntesis de Proteínas , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/aislamiento & purificación , Isoformas de Proteínas/metabolismo , ARN/biosíntesis , ARN/química , ARN Circular , ARN Bicatenario/química , ARN Bicatenario/genética , ARN Bicatenario/metabolismo , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/aislamiento & purificación , Proteínas de Unión al ARN/metabolismo , Transcripción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...