Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Foodborne Pathog Dis ; 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38593459

RESUMEN

Escherichia coli are present in the human and animal microbiome as facultative anaerobes and are viewed as an integral part of the whole gastrointestinal environment. In certain circumstances, some species can also become opportunistic pathogens responsible for severe infections in humans. These infections are caused by the enterotoxinogenic E. coli, enteroinvasive E. coli, enteropathogenic E. coli and the enterohemorrhagic E. coli species, frequently present in food products and on food matrices. Severe human infections can be caused by consumption of meat contaminated upon exposure to animal feces, and as such, farm animals are considered to be a natural reservoir. The mechanisms by which these four major species of E. coli adhere and persist in meat postslaughter are of major interest to public health and food processors given their frequent involvement in foodborne outbreaks. This review aims to structure and provide an update on the mechanistic roles of environmental factors, curli, type I and type IV pili on E. coli adherence/interaction with meat postslaughter. Furthermore, we emphasize on the importance of bacterial surface structures, which can be used in designing interventions to enhance food safety and protect public health by reducing the burden of foodborne illnesses.

2.
Antioxidants (Basel) ; 13(4)2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38671876

RESUMEN

Antimicrobial resistance poses considerable issues for current clinical care, so the modified use of antimicrobial agents and public health initiatives, coupled with new antimicrobial approaches, may help to minimize the impact of multidrug-resistant (MDR) bacteria in the future. This study aimed to evaluate the antimicrobial, antioxidant, and immunomodulatory activities of Lagenaria siceraria, Thymus vulgaris, and their chitosan nanocomposites against extensive drug-resistant (XDR) Pseudomonas aeruginosa and vancomycin-resistant Staphylococcus aureus (VRSA) using both in vitro and in vivo assays. The in vitro antimicrobial susceptibilities of P. aeruginosa and VRSA strains revealed 100% sensitivity to imipenem (100%). All P. aeruginosa strains were resistant to cefoxitin, cefepime, trimethoprim + sulfamethoxazole, and fosfomycin. However, S. aureus strains showed a full resistance to cefoxitin, amoxicillin, ampicillin, erythromycin, chloramphenicol, and fosfomycin (100% each). Interestingly, all S. aureus strains were vancomycin-resistant (MIC = 32-512 µg/mL), and 90% of P. aeruginosa and S. aureus strains were XDR. The antimicrobial potential of Lagenaria siceraria and Thymus vulgaris nanocomposites with chitosan nanoparticles demonstrated marked inhibitory activities against XDR P. aeruginosa and VRSA strains with inhibition zones' diameters up to 50 mm and MIC values ranging from 0.125 to 1 µg/mL and 1 to 8 µg/mL, respectively. The results of the in vivo approach in male Sprague Dawley rats revealed that infection with P. aeruginosa and S. aureus displayed significant changes in biochemical, hematological, and histopathological findings compared to the negative control group. These values returned to the normal range after treatment by chitosan nanoparticles, either loaded with Lagenaria siceraria or Thymus vulgaris. Real-time quantitative polymerase chain reaction (RT-qPCR) findings presented significant upregulation of the relative expression of the IL10 gene and downregulation of the IFNG gene throughout the experimental period, especially after treatment with chitosan nanoparticles loaded either with Lagenaria siceraria or Thymus vulgaris in comparison to the positive control groups. In conclusion, this is the first report suggesting the use of Lagenaria siceraria and Thymus vulgaris nanocomposites with chitosan nanoparticles as a promising contender for combating XDR P. aeruginosa and VRSA infections as well as a manager for inflammatory situations and oxidative stress-related disorders.

3.
Ir Vet J ; 77(1): 3, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38414081

RESUMEN

BACKGROUND: Starting primarily as an inflammation of the mammary gland, mastitis is frequently driven by infectious agents such as Staphylococcus aureus. Mastitis has a large economic impact globally, which includes diagnostic, treatment, and the production costs not to mention the potential milk contamination with antimicrobial residues. Currently, mastitis prevention and cure depends on intramammary infusion of antimicrobials, yet, their overuse risks engendering resistant pathogens, posing further threats to livestock. METHODS: In our study we aimed to investigate, in vitro, using bovine mammary epithelial cells (MAC-T), the efficacy of the AuraShield an antimicrobial mixture (As) in preventing S. aureus attachment, internalisation, and inflammation. The antimicrobial mixture (As) included: 5% maltodextrin, 1% sodium chloride, 42% citric acid, 18% sodium citrate, 10% silica, 12% malic acid, 9% citrus extract and 3% olive extract (w/w). RESULTS AND DISCUSSION: Herein we show that As can significantly reduce both adherence and invasion of MAC-T cells by S. aureus, with no impact on cell viability at all concentrations tested (0.1, 0.2, 0.5, 1%) compared with untreated controls. The anti-apoptotic effect of As was achieved by significantly reducing cellular caspase 1, 3 and 8 activities in the infected MAC-T cells. All As concentrations were proven to be subinhibitory, suggesting that Ac can reduce S. aureus virulence without bacterial killing and that the effect could be dual including a host modulation effect. In this context, we show that As can reduce the expression of S. aureus clumping factor (ClfB) and block its interaction with the host Annexin A2 (AnxA2), resulting in decreased bacterial adherence in infection of MAC-T cells. Moreover, the ability of As to block AnxA2 had a significant decreasing effect on the levels of pro inflammatory cytokine released upon S. aureus interaction with MAC-T cells. CONCLUSION: The results presented in this study indicate that mixtures of natural antimicrobials could potentially be considered an efficient alternative to antibiotics in treating S. aureus induced mastitis.

4.
Foods ; 12(20)2023 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-37893756

RESUMEN

The contact and adherence of bacteria to various surfaces has significant consequences on biofilm formation through changes in bacterial surface structures or gene expression with potential ramifications on plant and animal health. Therefore, this study aimed to investigate the effect of organic acid-based mixtures (Ac) on the ability Campylobacter jejuni and Escherichia coli to attach and form biofilm on various surfaces, including plastic, chicken carcass skins, straw bedding, and eggshells. Moreover, we aimed to explore the effect of Ac on the expression of E. coli (luxS, fimC, csgD) and C. jejuni (luxS, flaA, flaB) bacterial genes involved in the attachment and biofilm formation via changes in bacterial surface polysaccharidic structures. Our results show that Ac had a significant effect on the expression of these genes in bacteria either attached to these surfaces or in planktonic cells. Moreover, the significant decrease in bacterial adhesion was coupled with structural changes in bacterial surface polysaccharide profiles, impacting their adhesion and biofilm-forming ability. Essentially, our findings accentuate the potential of natural antimicrobials, such as Ac, in reducing bacterial attachment and biofilm formation across various environments, suggesting promising potential applications in sectors like poultry production and healthcare.

5.
Pharmaceutics ; 15(7)2023 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-37514180

RESUMEN

The objective of this work was to investigate, for the first time, the antioxidant effect of a mixture of natural antimicrobials in an Enterocytozoon hepatopenaei (EHP) shrimp-gut model of infection and the biological mechanisms involved in their way of action. The study approach included investigations, firstly, in vitro, on shrimp-gut primary (SGP) epithelial cells and in vivo by using EHP-challenged shrimp. Our results show that exposure of EHP spores to 0.1%, 0.5%, 1%, and 2% AuraAqua (Aq) significantly reduced spore activity at all concentrations but was more pronounced after exposure to 0.5% Aq. The Aq was able to reduce EHP infection of SGP cells regardless of cells being pretreated or cocultured during infection with Aq. The survivability of SGP cells infected with EHP spores was significantly increased in both scenarios; however, a more noticeable effect was observed when the infected cells were pre-exposed to Aq. Our data show that infection of SGP cells by EHP activates the host NADPH oxidases and the release of H2O2 produced. When Aq was used during infection, a significant reduction in H2O2 was observed concomitant with a significant increase in the levels of CAT and SOD enzymes. Moreover, in the presence of 0.5% Aq, the overproduction of CAT and SOD was correlated with the inactivation of the NF-κB pathway, which, otherwise, as we show, is activated upon EHP infection of SGP cells. In a challenge test, Aq was able to significantly reduce mortality in EHP-infected shrimp and increase the levels of CAT and SOD in the gut tissue. Conclusively, these results show, for the first time, that a mixture of natural antimicrobials (Aq) can reduce the EHP-spore activity, improve the survival rates of primary gut-shrimp epithelial cells and reduce the oxidative damage caused by EHP infection. Moreover, we show that Aq was able to stop the H2O2 activation of the NF-κB pathway of Crustins, Penaeidins, and the lysozyme, and the CAT and SOD activity both in vitro and in a shrimp challenge test.

6.
Antioxidants (Basel) ; 12(5)2023 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-37237883

RESUMEN

Staphylococcus aureus, Streptococcus pyogenes and Enterococcus faecalis can colonize the tooth root canals, adhere to dentin walls, and frequently cause periodontitis in dogs. Bacterial periodontal diseases are common in domesticated pets, causing severe oral cavity inflammation and a strong immune response. This study investigates the antioxidant effect of a natural antimicrobial mixture (Auraguard-Ag) on the ability of S. aureus, S. pyogenes and E. faecalis to infect primary canine oral epithelial cells as well as its impact on their virulence factors. Our data show that a concentration of 0.25% Ag is sufficient to inhibit the growth of all three pathogens, whereas a concentration of 0.5% will become bactericidal. The sub-inhibitory concentration of 0.125% Ag reveals that the antimicrobial mixture can significantly reduce biofilm formation and exopolysaccharide production. The impact on these virulence factors was further translated into a significantly reduced ability to infect primary canine oral epithelial cells and restore epithelial tight junctions, with no impact on the epithelial cell viability. The post-infection inflammatory cytokines (IL-1ß and IL-8) and the COX-2 mediator were also reduced both in mRNA and protein expression levels. The oxidative burst, detected upon infection, was also decreased in the presence of Ag, as our results show a significant decrease in H2O2 released by the infected cells. We show that inhibition of either NADPH or ERK activity will result in a downregulation of COX-2 expression and lower levels of H2O2 in infected cells. Conclusively, our study shows that natural antimicrobials reduce pro-inflammatory events, post infection, through an antioxidative mechanism that involves the downregulation of the COX-2 mediator via the inactivation of ERK in the absence of H2O2. As a result, they significantly reduce the risk of secondary bacterial infections and host oxidative stress caused by Staphylococcus aureus, Streptococcus pyogenes and Enterococcus faecalis accumulation in biofilms in an in vitro canine oral infection model.

7.
Antioxidants (Basel) ; 11(11)2022 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-36358558

RESUMEN

Legionella pneumophila is responsible for causing Legionnaires' disease and Pontiac fever, also known as legionellosis. The aim of this study was to investigate the mechanistic effect of a mixture of natural antimicrobials (Citrox BCL) in preventing L. pneumophila biofilm formation and reducing its in vitro virulence. The minimum inhibitory concentrations were detected at 0.06%, and the MBC was established at 0.125%. Based on the growth curve profile, the sub-inhibitory concentration of 0.02% was further used to study the mechanistic implications in the absence of a cytotoxic effect on A549 cells. At 24 h post-infection, Citrox BCL reduced (p = 0.005) the intracellular growth of L. pneumophila when the A549 cells or the bacteria were pre-treated with 0.02% Citrox BCL. This result was replicated when Citrox BCL was added during the 24 h infection assay leading to a reduction in intracellular growth (p = 0.003). Herein we show that at the sub-inhibitory concentration of 0.02%, Citrox CBL lowers the ROS levels in infected A549 cells and causes a 45% reduction in L. pneumophila EPS production, a reduction associated with the decline in biofilm formation. Overall, our results corroborate the low c-di-GMP production with the decrease in biofilm formation and low EPS levels. The low EPS levels seemed to be caused by the downregulation of the tatB and tatC gene expressions. Moreover, inhibition of pvcA and pvcB gene expressions, leading to lower siderophore levels, suggests that Citrox BCL reduces the ability of L. pneumophila to sequester iron and reduce biofilm formation through iron starvation.

8.
Foodborne Pathog Dis ; 19(10): 693-703, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35905047

RESUMEN

The Campylobacter genus is the leading cause of human gastroenteritis, with the consumption of contaminated poultry meat as the main route of infection. Probiotic bacteria, such as Lactobacillus, Bacillus, Escherichia coli Nissle, and Bifidobacterium species, have a great immunomodulatory capacity and exhibit antipathogenic effects through various molecular mechanisms. Reducing Campylobacter levels in livestock animals, such as poultry, will have a substantial benefit to humans as it will reduce disease transmissibility through the food chain. Moreover, probiotic-based strategies might attenuate intestinal inflammatory processes, which consequently reduce the severity of Campylobacter disease progression. At a molecular level, probiotics can also negatively impact on the functionality of various Campylobacter virulence and survival factors (e.g., adhesion, invasion), and on the associated colonization proteins involved in epithelial translocation. The current review describes recent in vitro, in vivo, and preclinical findings on probiotic therapies, aiming to reduce Campylobacter counts in poultry and reduce the pathogen's virulence in the avian and human host. Moreover, we focused in particular on probiotics with known anti-Campylobacter activity seeking to understand the biological mechanisms involved in their mode of action.


Asunto(s)
Infecciones por Campylobacter , Campylobacter jejuni , Campylobacter , Enfermedades de las Aves de Corral , Probióticos , Humanos , Animales , Infecciones por Campylobacter/prevención & control , Infecciones por Campylobacter/veterinaria , Infecciones por Campylobacter/microbiología , Pollos/microbiología , Probióticos/uso terapéutico , Enfermedades de las Aves de Corral/prevención & control , Enfermedades de las Aves de Corral/microbiología , Aves de Corral
9.
Artículo en Inglés | MEDLINE | ID: mdl-35742513

RESUMEN

Considering the major limitations of the latest studies conducted in Romania on the knowledge, attitudes and practices (KAPs) of antibiotic use and antibiotic resistance, we conducted this study to assess this major public health threat. A cross-sectional survey based on a validated questionnaire was conducted among the general population of Romania for a period of 5 months, i.e., September 2021-January 2022. The questionnaire was distributed using Google Form and it covered demographic characteristics and KAP assessments consisting of 12 items on knowledge, 10 items on attitudes and 3 items on practices. Latent class analyses (LCAs) were conducted to group respondents based on their responses. The response rate was 77%, of which females responded in a greater number (n = 1251) compared to males (n = 674). For most of the respondents (67.32%, n = 1296), the education level was high school, while 23.58% (n = 454) of respondents were college graduates. One in three Romanians (33.3%) know the WHO predictions related to this topic. Overall, the Romanian population is less disciplined when it comes to completing antibiotic treatments, as 29.19% of the respondents stop the course of antibiotic administration if their symptoms improve. The key findings from the present study may help policy makers in designing targeted interventions to decrease confusion, ambiguity or misconceptions about antibiotic use.


Asunto(s)
Antibacterianos , Conocimientos, Actitudes y Práctica en Salud , Antibacterianos/uso terapéutico , Estudios Transversales , Farmacorresistencia Microbiana , Femenino , Humanos , Análisis de Clases Latentes , Masculino , Rumanía , Encuestas y Cuestionarios
10.
Antioxidants (Basel) ; 11(5)2022 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-35624838

RESUMEN

Nematopsis messor infections severely impact on shrimp's health with devastating economic consequences on shrimp farming. In a shrimp primary intestinal cells (SGP) model of infection, a sub-inhibitory concentration (0.5%) of natural antimicrobials (Aq) was able to reduce the ability of N. messor to infect (p < 0.0001). To prevent N. messor infection of SGP cells, Aq inhibits host actin polymerization and restores tight junction integrity (TEER) and the expression of Zo-1 and occluding. The oxidative burst, caused by N. messor infection, is attenuated by Aq through the inhibition of NADPH-produced H2O2. Simultaneous to the reduction in H2O2 released, the activity of catalase (CAT) and superoxide dismutase (SOD) were also significantly increase (p < 0.0001). The antimicrobial mixture inactivates the ERK signal transduction pathway by tyrosine dephosphorylation and reduces the expression of DCR2, ALF-A, and ALF-C antimicrobial peptides. The observed in vitro results were also translated in vivo, whereby the use of a shrimp challenge test, we show that in N. messor infected shrimp the mortality rate was 68% compared to the Aq-treated group where the mortality rate was maintained at 14%. The significant increase in CAT and SOD activity in treated and infected shrimp suggested an in vivo antioxidant role for Aq. In conclusion, our study shows that Aq can efficiently reduce N. messor colonization of shrimp's intestinal cells in vitro and in vivo and the oxidative induced cellular damage, repairs epithelial integrity, and enhances gut immunity.

11.
Biomedicines ; 10(2)2022 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-35203588

RESUMEN

Biocides are currently considered the first line of defense against foodborne pathogens in hospitals or food processing facilities due to the versatility and efficiency of their chemical active ingredients. Understanding the biological mechanisms responsible for their increased efficiency, especially when used against foodborne pathogens on contaminated surfaces and materials, represents an essential first step in the implementation of efficient strategies for disinfection as choosing an unsuitable product can lead to antibiocide resistance or antibiotic-biocide cross-resistance. This review describes these biological mechanisms for the most common foodborne pathogens and focuses mainly on the antipathogen effect, highlighting the latest developments based on in vitro and in vivo studies. We focus on biocides with inhibitory effects against foodborne bacteria (e.g., Escherichia spp., Klebsiella spp., Staphylococcus spp., Listeria spp., Campylobacter spp.), aiming to understand their biological mechanisms of action by looking at the most recent scientific evidence in the field.

12.
Biology (Basel) ; 12(1)2022 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-36671749

RESUMEN

Increasing the abundance of probiotic bacteria in the gut requires either direct dietary supplementation or the inclusion of feed additives able to support the growth of beneficial commensal bacteria. In crustaceans, the increased presence of probiotic-like bacteria in the gut, including of Faecalibacterium prausnitzii (F. prausnitzii), will guarantee a positive health status and a gut environment that will ensure enhanced performance. The aim of this study was to investigate if a mixture of organic acids, AuraAqua (Aq) can stimulate the growth and the anti-pathogenic efficacy of F. prausnitzii through a combination of in vitro and ex vivo models. The results showed that 0.5% Aq was able to improve the growth rate of F. prausnitzii in vitro and in an ex vivo shrimp gut model. Moreover, we were able to demonstrate that Aq increases butyrate production and cellulose degradation in culture or in the shrimp gut model. The growth-stimulating effect of Aq also led to an improved and anti-pathogenic effect against Vibrio parahaemolyticus in a co-culture experiment with shrimp gut primary epithelial cells (SGP). In conclusion, our work demonstrates that Aq can stimulate the growth of F. prausnitzii, increase the production of short-chain fatty acid (SCFA) butyrate, improve substrate digestion, and prevent V. parahaemolyticus invasion of SGP cells.

13.
Biomedicines ; 9(10)2021 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-34680583

RESUMEN

The destructive impact of cardiovascular diseases on health, including heart failure, peripheral artery disease, atherosclerosis, stroke, and other cardiac pathological conditions, positions these health conditions as leading causes of increased global mortality rates, thereby impacting the human quality of life. The considerable changes in modern lifestyles, including the increase in food intake and the change in eating habits, will unavoidably lead to an unbalanced consumption of essential fatty acids, with a direct effect on cardiovascular health problems. In the last decade, essential fatty acids have become the main focus of scientific research in medical fields aiming to establish their impact for preventing cardiovascular diseases and the associated risk factors. Specifically, polyunsaturated fatty acids (PUFA), such as omega 3 fatty acids, and monounsaturated fatty acids from various sources are mentioned in the literature as having a cardio-protective role, due to various biological mechanisms that are still to be clarified. This review aims to describe the major biological mechanisms of how diets rich in essential fatty acids, or simply essential fatty acid administration, could have anti-inflammatory, vasodilatory, anti-arrhythmic, antithrombotic, antioxidant, and anti-atherogenic effects. This review describes findings originating from clinical studies in which dietary sources of FAs were tested for their role in mitigating the impact of heart disorders in human health.

14.
Diseases ; 9(3)2021 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-34562967

RESUMEN

In recent years, probiotics have attracted public attention and transformed the social perception of microorganisms, convening a beneficial role/state on human health. With aging, the immune system, body physiology, and intestinal microbiota tend to change unfavorably, resulting in many chronic conditions. The immune-mediated disorders can be linked to intestinal dysbiosis, consequently leading to immune dysfunctions and a cluster of conditions such as asthma, autoimmune diseases, eczema, and various allergies. Probiotic bacteria such as Lactobacillus and Bifidobacterium species are considered probiotic species that have a great immunomodulatory and anti-allergic effect. Moreover, recent scientific and clinical data illustrate that probiotics can regulate the immune system, exert anti-viral and anti-tumoral activity, and shields the host against oxidative stress. Additionally, microbiota programming by probiotic bacteria can reduce and prevent the symptoms of respiratory infections and ameliorate the neurological status in humans. This review describes the most recent clinical findings, including safe probiotic therapies aiming to medicate respiratory infections, allergies, cancer, and neurological disorders due to their physiological interconnection. Subsequently, we will describe the major biological mechanism by which probiotic bacteriotherapy expresses its anti-viral, anti-allergic, anticancer, and neuro-stimulatory effects.

15.
Sci Rep ; 11(1): 16202, 2021 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-34376718

RESUMEN

Eimeria tenella and Eimeria bovis are complex parasites responsible for the condition of coccidiosis, that invade the animal gastrointestinal intestinal mucosa causing severe diarrhoea, loss of appetite or abortions, with devastating impacts on the farming industry. The negative impacts of these parasitic infections are enhanced by their role in promoting the colonisation of the gut by common foodborne pathogens. The aim of this study was to test the anti-Eimeria efficacy of maltodextrin, sodium chloride, citric acid, sodium citrate, silica, malic acid, citrus extract, and olive extract individually, in vitro and in combination, in vivo. Firstly, in vitro infection models demonstrated that antimicrobials reduced (p < 0.05), both singly and in combination (AG), the ability of E. tenella and E. bovis to infect MDBK and CLEC-213 epithelial cells, and the virulence reduction was similar to that of the anti-coccidial drug Robenidine. Secondly, using an in vivo broiler infection model, we demonstrated that AG reduced (p = 0.001) E. tenella levels in the caeca and excreted faeces, reduced inflammatory oxidative stress, improved the immune response through reduced ROS, increased Mn-SOD and SCFA levels. Levels of IgA and IgM were significantly increased in caecal tissues of broilers that received 0.5% AG and were associated with improved (p < 0.0001) tissue lesion scores. A prophylactic approach increased the anti-parasitic effect in vivo, and results indicated that administration from day 0, 5 and 10 post-hatch reduced tissue lesion scores (p < 0.0001) and parasite excretion levels (p = 0.002). Conclusively, our in vitro and in vivo results demonstrate that the natural antimicrobial mixture (AG) reduced parasitic infections through mechanisms that reduced pathogen virulence and attenuated host inflammatory events.


Asunto(s)
Ácidos/farmacología , Antiparasitarios/farmacología , Coccidiosis/tratamiento farmacológico , Células Epiteliales/efectos de los fármacos , Compuestos Orgánicos/farmacología , Enfermedades de las Aves de Corral/tratamiento farmacológico , Esporozoítos/efectos de los fármacos , Animales , Bovinos , Pollos , Coccidiosis/parasitología , Coccidiosis/veterinaria , Eimeria/efectos de los fármacos , Eimeria tenella/efectos de los fármacos , Células Epiteliales/parasitología , Técnicas In Vitro , Pulmón/efectos de los fármacos , Pulmón/parasitología , Enfermedades de las Aves de Corral/parasitología
16.
Gut Pathog ; 13(1): 37, 2021 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-34099034

RESUMEN

BACKGROUND: The classification of natural antimicrobials as potential antibiotic replacements is still hampered by the absence of clear biological mechanisms behind their mode of action. This study investigated the mechanisms underlying the anti-bacterial effect of a mixture of natural antimicrobials (maltodextrin, citric acid, sodium citrate, malic acid, citrus extract and olive extract) against Campylobacter jejuni RC039, Salmonella enterica SE 10/72 and Clostridium perfringens ATCC® 13124 invasion of Madin-Darby Canine Kidney cells (MDCK). RESULTS: Minimum sub-inhibitory concentrations were determined for Campylobacter jejuni (0.25%), Salmonella enterica (0.50%) and Clostridium perfringens (0.50%) required for the in vitro infection assays with MDCK cells. The antimicrobial mixture significantly reduced the virulence of all three pathogens towards MDCK cells and restored the integrity of cellular tight junctions through increased transepithelial resistance (TEER) and higher expression levels of ZO-1 (zonula occludens 1) and occludin. This study also identified the ERK (external regulated kinase) signalling pathway as a key mechanism in blocking the pro-inflammatory cytokine production (IL-1ß, IL-6, IL-8, TNF-α) in infected cells. The reduction in hydrogen peroxide (H2O2) production and release by infected MDCK cells, in the presence of the antimicrobial mixture, was also associated with less tetrathionate formed by oxidation of thiosulphate (p < 0.0001). CONCLUSION: The present study describes for the first time that mixtures of natural antimicrobials can prevent the formation of substrates used by bacterial pathogens to grow and survive in anaerobic environments (e.g. tetrathionate). Moreover, we provide further insights into pathogen invasion mechanisms through restoration of cellular structures and describe their ability to block the ERK-MAPK kinase pathway responsible for inflammatory cytokine release.

17.
Int J Food Microbiol ; 338: 108998, 2021 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-33279789

RESUMEN

Reducing the Campylobacter load on poultry carcasses represents a major tasks for the industry as its ability to reduce their presence is of major interest aiming to increase consumer safety. This study investigated the ability of a mixture of natural antimicrobials (A3001) to reduce the adherence of the T6SS+/-C. coli isolates (NC1hcp-, NC2 hcp- and NC3 hcp+) to chicken neck skin and whole carcasses. Overall, the antimicrobial mixture induced a significant reduction in the capability of our C. coli isolates to colonise the chicken skin (p < 0.05) and carcasses (p < 0.0001) but with a greater effect (≈3 log reduction) on the NC3 isolate. Using the HCT-8 in vitro infection model we also show that at a concentration of 0.5% A3001, the impact on the NC3 isolate is accompanied by the downregulation of the hcp gene (p = 0.0001), and indicator of the T6SS presence. The results described herein also indicated that these isolates are highly resistant to H2O2, up to 20 mM, suggesting a high resilience to environmental stresses. In summary our study shows that natural antimicrobials can reduce the ability of T6SS positive chicken C. coli isolates to adhere to chicken skin or to the whole carcass and to infect epithelial cells in vitro and could be considered a potential intervention at processor level.


Asunto(s)
Campylobacter coli/efectos de los fármacos , Pollos/microbiología , Microbiología de Alimentos , Piel/microbiología , Animales , Antibacterianos/farmacología , Peróxido de Hidrógeno/farmacología
18.
Sci Rep ; 10(1): 16631, 2020 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-33024252

RESUMEN

The aim of this study was to test in vitro the ability of a mixture of citrus extract, maltodextrin, sodium chloride, lactic acid and citric acid (AuraShield L) to inhibit the virulence of infectious bronchitis, Newcastle disease, avian influenza, porcine reproductive and respiratory syndrome (PRRS) and bovine coronavirus viruses. Secondly, in vivo, we have investigated its efficacy against infectious bronchitis using a broiler infection model. In vitro, these antimicrobials had expressed antiviral activity against all five viruses through all phases of the infection process of the host cells. In vivo, the antimicrobial mixture reduced the virus load in the tracheal and lung tissue and significantly reduced the clinical signs of infection and the mortality rate in the experimental group E2 receiving AuraShield L. All these effects were accompanied by a significant reduction in the levels of pro-inflammatory cytokines and an increase in IgA levels and short chain fatty acids (SCFAs) in both trachea and lungs. Our study demonstrated that mixtures of natural antimicrobials, such AuraShield L, can prevent in vitro viral infection of cell cultures. Secondly, in vivo, the efficiency of vaccination was improved by preventing secondary viral infections through a mechanism involving significant increases in SCFA production and increased IgA levels. As a consequence the clinical signs of secondary infections were significantly reduced resulting in recovered production performance and lower mortality rates in the experimental group E2.


Asunto(s)
Antivirales/farmacología , Infecciones por Coronavirus/tratamiento farmacológico , Coronavirus Bovino/efectos de los fármacos , Células Epiteliales/efectos de los fármacos , Virus de la Bronquitis Infecciosa/efectos de los fármacos , Subtipo H9N2 del Virus de la Influenza A/efectos de los fármacos , Virus de la Enfermedad de Newcastle/efectos de los fármacos , Virus del Síndrome Respiratorio y Reproductivo Porcino/efectos de los fármacos , Enfermedades de las Aves de Corral/tratamiento farmacológico , Animales , Línea Celular , Embrión de Pollo , Pollos , Infecciones por Coronavirus/virología , Modelos Animales de Enfermedad , Células Epiteliales/virología , Humanos , Gripe Aviar/metabolismo , Gripe Aviar/virología , Gripe Humana/metabolismo , Gripe Humana/virología , Enfermedad de Newcastle/metabolismo , Enfermedad de Newcastle/virología , Síndrome Respiratorio y de la Reproducción Porcina/metabolismo , Síndrome Respiratorio y de la Reproducción Porcina/virología , Enfermedades de las Aves de Corral/virología , Porcinos
19.
Microorganisms ; 7(12)2019 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-31835728

RESUMEN

Reducing acute mortality in aquatic crustaceans using natural alternatives to antibiotics has become a necessity, firstly for its positive impact on the aquaculture industry and, secondly, because the extensive use of antibiotics may lead to increased levels of drug resistance in pathogenic microorganisms. This study aimed to investigate the effect of a mixture of natural antimicrobials on the in vitro and in vivo virulence abilities of Type VI secretion system (T6SS)-positive Vibrio parahaemolyticus (A3 and D4), strains known as having potentially harmful health consequences for aquatic crustaceans and consumers. Herein, we report that a natural antimicrobial mixture (A3009) was capable of significantly reducing the virulence of V. parahaemolyticus strains A3 and D4 in an in vitro infection model, using the fish cell line CHSE-214, an effect which correlates with the bacterial downregulation of hcp1 and hcp2 gene expression and with the ability of the antimicrobial to efficiently retain low cytotoxic levels (p < 0.001). We show for the first time that a natural antimicrobial is able to significantly reduce the mortality of shrimps in a challenge experiment and is able to significantly attenuate H2O2 release during infection (p < 0.001), indicating that it could harbor positive intestinal redox balance effects.

20.
BMC Res Notes ; 12(1): 180, 2019 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-30922352

RESUMEN

OBJECTIVES: In this study we have investigated the in vitro and in vivo virulence characteristics of a new T6SS positive Campylobacter jejuni chicken isolate (SV12) originating from a poultry population in North Romania. A detailed phenotypic characterization was performed and compared to the T6SS negative C. jejuni 81-176 wild strain. RESULTS: Our results indicate that the significantly higher capacity to attach and invade HCT-8 cells of C. jejuni SV12 isolate is associated with increased motility, increased resistance to bile salts and serum resistance, when compared to C. jejuni strain 81-76. Mice infected with the SV12 isolate showed statistically higher levels of colonization at both 7- and 14-days post-inoculation and in the stomach, caecum, duodenum and large intestine. Infection with the SV12 strain induced a stronger immune response as the gene transcript levels of IL-17, TNFα and IFNγ were more pronouncedly up-regulated compared to the C. jejuni strain 81-176. The present study showed that the new isolate SV12 had an enhanced virulence capacity compared to the wild strain which was evident in vivo as well. This work also provides an insight on the colonization pattern and host immune response differences between T6SS positive and T6SS negative C. jejuni.


Asunto(s)
Antibacterianos/farmacología , Infecciones por Campylobacter/microbiología , Campylobacter jejuni/aislamiento & purificación , Campylobacter jejuni/patogenicidad , Pollos/microbiología , Enfermedades de las Aves de Corral/microbiología , Animales , Infecciones por Campylobacter/tratamiento farmacológico , Campylobacter jejuni/efectos de los fármacos , Modelos Animales de Enfermedad , Ratones , Ratones Endogámicos BALB C , Enfermedades de las Aves de Corral/tratamiento farmacológico , Rumanía , Virulencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...