Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-22272368

RESUMEN

ImportanceSocial determinants of health (SDOH) play an important role in COVID-19 outcomes. More research is needed to quantify this relationship and understand the underlying mechanisms. ObjectivesTo examine differential patterns in COVID-19-related mortality by area-level SDOH accounting for confounders; and to compare these patterns to those for non-COVID-19 mortality, and COVID-19 case fatality (COVID-19-related death among those diagnosed). Design, setting, and participantsPopulation-based retrospective cohort study including all community living individuals aged 20 years or older residing in Ontario, Canada, as of March 1, 2020 who were followed through to March 2, 2021. ExposureSDOH variables derived from the 2016 Canada Census at the dissemination area-level including: median household income; educational attainment; proportion of essential workers, racialized groups, recent immigrants, apartment buildings, and high-density housing; and average household size. Main outcomes and measuresCOVID-19-related death was defined as death within 30 days following, or 7 days prior to a positive SARS-CoV-2 test. Cause-specific hazard models were employed to examine the associations between SDOH and COVID-19-related mortality, treating non-COVID-19 mortality as a competing risk. ResultsOf 11,810,255 individuals included, 3,880 (0.03%) died related to COVID-19 and 88,107 (0.75%) died without a positive test. After accounting for demographics, baseline health, and other SDOH, the following SDOH were associated with increased hazard of COVID-19-related death (hazard ratios [95% confidence intervals]) comparing the most to least vulnerable group): lower income (1.30[1.09-1.54]), lower educational attainment (1.27[1.10-1.47]), higher proportion essential workers (1.28[1.10-1.50]), higher proportion racialized groups (1.42[1.16-1.73]), higher proportion apartment buildings (1.25[1.11-1.41]), and larger vs. medium household size (1.30[1.13-1.48]). In comparison, areas with higher proportion racialized groups were associated with a lower hazard of non-COVID-19 mortality (0.88[0.85-0.92]). With the exception of income, SDOH were not independently associated with COVID-19 case fatality. Conclusions and relevanceArea-level social and structural inequalities determine COVID-19-related mortality after accounting for individual demographic and clinical factors. COVID-19 has reversed the pattern of lower non-COVID-19 mortality by racialized groups. Pandemic responses should include prioritized and community-tailored intervention strategies to address SDOH that mechanistically underpin disproportionate acquisition and transmission risks and shape barriers to the reach of, and access to prevention interventions. Key pointsO_ST_ABSQuestionC_ST_ABSAre area-level social determinants of health factors independently associated with coronavirus disease 2019 (COVID-19)-related mortality after accounting for demographics and clinical factors? FindingsIn this population-based cohort study including 11.8 million adults residing in Ontario, Canada and 3,880 COVID-19-related death occurred between Mar 1, 2020 and Mar 2, 2021, we found that areas characterized by lower SES (including lower income, lower educational attainment, and higher proportion essential workers), greater ethnic diversity, more apartment buildings, and larger vs. medium household size were associated with increased hazard of COVID-19-related mortality compared to their counterparts, even after accounting for individual-level demographics, baseline health, and other area-level SDOH. MeaningPandemic responses should include prioritized and community-tailored intervention strategies to address SDOH that mechanistically underpin inequalities in acquisition and transmission risks, and in the reach of, and access to prevention interventions.

2.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-21268565

RESUMEN

BackgroundThe incidence of SARS-CoV-2 infection, including among those who have received 2 doses of COVID-19 vaccines, increased substantially following the emergence of Omicron in Ontario, Canada. MethodsApplying the test-negative study design to linked provincial databases, we estimated vaccine effectiveness (VE) against symptomatic infection and severe outcomes (hospitalization or death) caused by Omicron or Delta between December 6 and 26, 2021. We used multivariable logistic regression to estimate the effectiveness of 2 or 3 COVID-19 vaccine doses by time since the latest dose, compared to unvaccinated individuals. ResultsWe included 16,087 Omicron-positive cases, 4,261 Delta-positive cases, and 114,087 test-negative controls. VE against symptomatic Delta infection declined from 89% (95%CI, 86-92%) 7-59 days after a second dose to 80% (95%CI, 74-84%) after [≥]240 days, but increased to 97% (95%CI, 96-98%) [≥]7 days after a third dose. VE against symptomatic Omicron infection was only 36% (95%CI, 24-45%) 7-59 days after a second dose and provided no protection after [≥]180 days, but increased to 61% (95%CI, 56-65%) [≥]7 days after a third dose. VE against severe outcomes was very high following a third dose for both Delta and Omicron (99% [95%CI, 98-99%] and 95% [95%CI, 87-98%], respectively). ConclusionsIn contrast to high levels of protection against both symptomatic infection and severe outcomes caused by Delta, our results suggest that 2 doses of COVID-19 vaccines only offer modest and short-term protection against symptomatic Omicron infection. A third dose improves protection against symptomatic infection and provides excellent protection against severe outcomes for both variants.

3.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-21259420

RESUMEN

SARS-CoV-2 variants of concern (VOC) are more transmissible and have the potential for increased disease severity and decreased vaccine effectiveness. We estimated the effectiveness of BNT162b2 (Pfizer-BioNTech Comirnaty), mRNA-1273 (Moderna Spikevax), and ChAdOx1 (AstraZeneca Vaxzevria) vaccines against symptomatic SARS-CoV-2 infection and COVID-19 hospitalization or death caused by the Alpha (B.1.1.7), Beta (B.1.351), Gamma (P.1), and Delta (B.1.617.2) VOCs in Ontario, Canada using a test-negative design study. Effectiveness against symptomatic infection [≥]7 days after two doses was 89-92% against Alpha, 87% against Beta, 88% against Gamma, 82-89% against Beta/Gamma, and 87-95% against Delta across vaccine products. The corresponding estimates [≥]14 days after one dose were lower. Effectiveness estimates against hospitalization or death were similar to, or higher than, against symptomatic infection. Effectiveness against symptomatic infection is generally lower for older adults ([≥]60 years) compared to younger adults (<60 years) for most of the VOC-vaccine combinations.

4.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-21257744

RESUMEN

ObjectivesTo estimate the effectiveness of mRNA COVID-19 vaccines against symptomatic infection and severe outcomes. DesignWe applied a test-negative design study to linked laboratory, vaccination, and health administrative databases, and used multivariable logistic regression adjusting for demographic and clinical characteristics associated with SARS-CoV-2 and vaccine receipt to estimate vaccine effectiveness (VE) against symptomatic infection and severe outcomes. SettingOntario, Canada between 14 December 2020 and 19 April 2021. ParticipantsCommunity-dwelling adults aged [≥]16 years who had COVID-19 symptoms and were tested for SARS-CoV-2. InterventionsPfizer-BioNTechs BNT162b2 or Modernas mRNA-1273 vaccine. Main outcome measuresLaboratory-confirmed SARS-CoV-2 by RT-PCR; hospitalization/death associated with SARS-CoV-2 infection. ResultsAmong 324,033 symptomatic individuals, 53,270 (16.4%) were positive for SARS-CoV-2 and 21,272 (6.6%) received [≥]1 vaccine dose. Among test-positive cases, 2,479 (4.7%) had a severe outcome. VE against symptomatic infection [≥]14 days after receiving only 1 dose was 60% (95%CI, 57 to 64%), increasing from 48% (95%CI, 41 to 54%) at 14-20 days after the first dose to 71% (95%CI, 63 to 78%) at 35-41 days. VE [≥]7 days after 2 doses was 91% (95%CI, 89 to 93%). Against severe outcomes, VE [≥]14 days after 1 dose was 70% (95%CI, 60 to 77%), increasing from 62% (95%CI, 44 to 75%) at 14-20 days to 91% (95%CI, 73 to 97%) at [≥]35 days, whereas VE [≥]7 days after 2 doses was 98% (95%CI, 88 to 100%). For adults aged [≥]70 years, VE estimates were lower for intervals shortly after receiving 1 dose, but were comparable to younger adults for all intervals after 28 days. After 2 doses, we observed high VE against E484K-positive variants. ConclusionsTwo doses of mRNA COVID-19 vaccines are highly effective against symptomatic infection and severe outcomes. Single-dose effectiveness is lower, particularly for older adults shortly after the first dose.

5.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-21256052

RESUMEN

BackgroundSociodemographic and clinical factors are emerging as important predictors for developing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. ObjectiveTo determine whether public health interventions that culminated in a stay-at-home lockdown instituted during the first wave of the pandemic in March/April 2020 were effective at mitigating the association of any of these factors with the risk of infection. DesignPopulation-based cohort study SettingOntario, Canada PatientsAll adults that underwent testing for SARS-CoV-2 between January 1 and June 12, 2020. MeasurementsThe outcome of interest was SARS-CoV-2 infection, determined by reverse transcription polymerase chain reaction testing. Adjusted odds ratios (ORs) were determined for sociodemographic and clinical risk factors before and after the peak of the pandemic to assess for changes in effect sizes. ResultsAmong 578,263 community-dwelling individuals, 20,524 (3.5%) people tested positive. The association between age and SARS-CoV-2 infection risk among tested community-dwelling individuals varied over time (P-interaction <0.0001). Prior to the first-wave peak of the pandemic, the likelihood of SARS-CoV-2 infection increased progressively with age compared with individuals aged 18-45 years (P<0.0001). This association subsequently reversed, with all age groups younger than 85 years at progressively higher risk of infection (P<0.0001) after the peak. Otherwise, risk factors that persisted throughout included male sex, residing in lower income neighborhoods, residing in more racially/ethnically diverse communities, immigration to Canada, and history of hypertension and diabetes. While there was a reduction in infection rates across Ontario after mid-April, there was less impact in regions with higher degrees of racial/ethnic diversity. When considered in an additive risk model, following the initial peak of the pandemic, individuals living in the most racially/ethnically diverse communities with 2, 3, or [≥]4 risk factors had ORs of 1.89, 3.07, and 4.73-fold higher for SARS-CoV-2 infection compared to lower risk individuals in their community (all P<0.0001). In contrast, in the least racially/ethnically diverse communities, there was little to no gradient in infection rates across risk strata. ConclusionAfter public health interventions in March/April 2020, people with multiple risk factors residing in the most racially diverse communities of Ontario continued to have the highest likelihood of SARS-CoV-2 infection while risk was mitigated for people with multiple risk factors residing in less racially/ethnically diverse communities. Further efforts are necessary to reduce the risk of SARS-CoV-2 infection among the highest risk individuals residing in these communities. Primary Funding SourceCanadian Institutes of Health Research and the Ted Rogers Centre for Heart Research.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA