Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Radiother Oncol ; 196: 110326, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38735536

RESUMEN

PURPOSE: The oxygen depletion hypothesis has been proposed as a rationale to explain the observed phenomenon of FLASH-radiotherapy (FLASH-RT) sparing normal tissues while simultaneously maintaining tumor control. In this study we examined the distribution of DNA Damage Response (DDR) markers in irradiated 3D multicellular spheroids to explore the relationship between FLASH-RT protection and radiolytic-oxygen-consumption (ROC) in tissues. METHODS: Studies were performed using a Varian Truebeam linear accelerator delivering 10 MeV electrons with an average dose rate above 50 Gy/s. Irradiations were carried out on 3D spheroids maintained under a range of O2 and temperature conditions to control O2 consumption and create gradients representative of in vivo tissues. RESULTS: Staining for pDNA-PK (Ser2056) produced a linear radiation dose response whereas γH2AX (Ser139) showed saturation with increasing dose. Using the pDNA-PK staining, radiation response was then characterised for FLASH compared to standard-dose-rates as a function of depth into the spheroids. At 4 °C, chosen to minimize the development of metabolic oxygen gradients within the tissues, FLASH protection could be observed at all distances under oxygen conditions of 0.3-1 % O2. Whereas at 37 °C a FLASH-protective effect was limited to the outer cell layers of tissues, an effect only observed at 3 % O2. Modelling of changes in the pDNA-PK-based oxygen enhancement ratio (OER) yielded a tissue ROC g0-value estimate of 0.73 ± 0.25 µM/Gy with a km of 5.4 µM at FLASH dose rates. CONCLUSIONS: DNA damage response markers are sensitive to the effects of transient oxygen depletion during FLASH radiotherapy. Findings support the rationale that well-oxygenated tissues would benefit more from FLASH-dose-rate protection relative to poorly-oxygenated tissues.


Asunto(s)
Daño del ADN , Esferoides Celulares , Daño del ADN/efectos de la radiación , Humanos , Esferoides Celulares/efectos de la radiación , Histonas/metabolismo , Histonas/análisis , Consumo de Oxígeno/efectos de la radiación , Relación Dosis-Respuesta en la Radiación , Tratamientos Conservadores del Órgano/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...