Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Sci Nano ; 10(7): 1768-1777, 2023 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-37457049

RESUMEN

Coal combustion byproducts are known to be enriched in arsenic (As) and selenium (Se). This enrichment is a concern during the handling, disposal, and reuse of the ash as both elements can be harmful to wildlife and humans if mobilized into water and soils. The leaching potential and bioaccessibility of As and Se in coal fly ash depends on the chemical forms of these elements and their association with the large variety of particles that comprise coal fly ash. The overall goal of this research was to determine nanoscale and microscale solid phase mineral associations and oxidation states of As and Se in fly ash. We utilized nanoscale 2D imaging (30-50 nm spot size) with the Hard X-ray Nanoprobe (HXN) in combination with microprobe X-ray capabilities (∼5 µm resolution) to determine the As and Se elemental associations. Speciation of As and Se was also measured at the nano- to microscale with X-ray absorption spectroscopy. The enhanced resolution of HXN showed As and Se as either diffusely located around or comingled with Ca- and Fe-rich particles. The results also showed nanoparticles of Se attached to the surface of fly ash grains. Overall, a comparison of As and Se species across scales highlights the heterogeneity and complexity of chemical associations for these trace elements of concern in coal fly ash.

2.
Environ Sci Technol ; 57(8): 3104-3113, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36781166

RESUMEN

Mining wastes or combustion ash are materials of high carbon sequestration potential but are also known for their toxicity in terms of heavy metal content. To utilize such waste materials for engineered carbon mineralization purposes, there is a need to investigate the fate and mobility of toxic metals. This is a study of the coprecipitation of metals with calcium carbonate for environmental heavy metal mitigation. The study also examines the stability of precipitated phases under environmentally relevant acid conditions. For a wide range of cadmium (Cd) and zinc (Zn) concentrations (10 to 5000 mg/L), induced coprecipitation led to greater than 99% uptake from water. The calcium carbonate phases were found to contain amounts as high as 9.9 wt % (Cd) and 17 wt % (Zn), as determined by novel synchrotron techniques, including X-ray fluorescence element mapping and three-dimensional (3D) nanotransmission X-ray microscopy (TXM). TXM imaging revealed first-of-a-kind observations of chemical gradients and internal nanoporosity within particles. These observations provided new insights into the mechanisms leading to the retention of coprecipitated heavy metals during the dissolution of calcite in acidic (pH 4) solutions. These observations highlight the feasibility of utilizing carbonate coprecipitation as an engineered approach to the durable sequestration of toxic metals.


Asunto(s)
Metales Pesados , Zinc , Cadmio , Metales Pesados/química , Carbonatos , Carbonato de Calcio
3.
Environ Eng Sci ; 38(5): 285-287, 2021 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-34079201

RESUMEN

Marginalized communities lack full participation in social, economic, and political life, and they disproportionately bear the burden of environmental and health risks. This special issue of Environmental Engineering Science, the official journal of the Association of Environmental Engineering and Science Professors (AEESP), reports research on the unique environmental challenges faced by historically marginalized communities around the world. The results of community-based participatory research with an Afro-descendant community in Columbia, Native American communities in Alaska, United States, villagers in the Philippines, disadvantaged communities in California, United States, rural communities in Mexico and Costa Rica, homeless encampments in the San Diego River (United States) watershed entrepreneurs in Durban, South Africa, and remote communities in the island nation of Fiji are presented. The research reported in this special issue is transdisciplinary, bringing engineers together with anthropologists, sociologists, economists, and public health experts. In the 13 articles in this special issue, some of the topics covered include inexpensive technologies for water treatment, novel agricultural strategies for reversing biodiversity losses, and strategies for climate change adaptation. In addition, one article covered educational strategies for teaching ethics to prepare students for humanitarian engineering, including topics of poverty, sustainability, social justice, and engineering decisions under uncertainty. Finally, an article presented ways that environmental engineering professors can engage and promote the success of underrepresented minority students and enable faculty engaged in community-based participatory research.

4.
Proc Natl Acad Sci U S A ; 117(42): 26145-26150, 2020 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-33020284

RESUMEN

Irrigated agriculture contributes 40% of total global food production. In the US High Plains, which produces more than 50 million tons per year of grain, as much as 90% of irrigation originates from groundwater resources, including the Ogallala aquifer. In parts of the High Plains, groundwater resources are being depleted so rapidly that they are considered nonrenewable, compromising food security. When groundwater becomes scarce, groundwater withdrawals peak, causing a subsequent peak in crop production. Previous descriptions of finite natural resource depletion have utilized the Hubbert curve. By coupling the dynamics of groundwater pumping, recharge, and crop production, Hubbert-like curves emerge, responding to the linked variations in groundwater pumping and grain production. On a state level, this approach predicted when groundwater withdrawal and grain production peaked and the lag between them. The lags increased with the adoption of efficient irrigation practices and higher recharge rates. Results indicate that, in Texas, withdrawals peaked in 1966, followed by a peak in grain production 9 y later. After better irrigation technologies were adopted, the lag increased to 15 y from 1997 to 2012. In Kansas, where these technologies were employed concurrently with the rise of irrigated grain production, this lag was predicted to be 24 y starting in 1994. In Nebraska, grain production is projected to continue rising through 2050 because of high recharge rates. While Texas and Nebraska had equal irrigated output in 1975, by 2050, it is projected that Nebraska will have almost 10 times the groundwater-based production of Texas.


Asunto(s)
Riego Agrícola/normas , Conservación de los Recursos Hídricos/métodos , Productos Agrícolas/crecimiento & desarrollo , Grano Comestible/crecimiento & desarrollo , Agua Subterránea/análisis , Modelos Teóricos , Abastecimiento de Agua/normas , Recursos Hídricos/provisión & distribución
5.
Environ Sci Technol ; 54(19): 12502-12510, 2020 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-32845141

RESUMEN

Underground flows of acidic fluids through fractured rock can create new porosity and increase accessibility to hazardous trace elements such as arsenic. In this study, we developed a custom microfluidic cell for an in operando synchrotron experiment using X-ray attenuation. The experiment mimics reactive fracture flow by passing an acidic fluid over a surface of mineralogically heterogeneous rock from the Eagle Ford shale. Over 48 h, calcite was preferentially dissolved, forming an altered layer 200-500 µm thick with a porosity of 63-68% and surface area >10× higher than that in the unreacted shale as shown by xCT analyses. Calcite dissolution rate quantified from the attenuation data was 3 × 10-4 mol/m2s and decreased to 3 × 10-5 mol/m2s after 24 h because of increasing diffusion limitations. Erosion of the fracture surface increased access to iron-rich minerals, thereby increasing access to toxic metals such as arsenic. Quantification using XRF and XANES microspectroscopy indicated up to 0.5 wt % of As(-I) in arsenopyrite and 1.2 wt % of As(V) associated with ferrihydrite. This study provides valuable contributions for understanding and predicting fracture alteration and changes to the mobilization potential of hazardous metals and metalloids.


Asunto(s)
Arsénico , Carbonatos , Microfluídica , Minerales , Sincrotrones
6.
Environ Eng Sci ; 37(4): 235-245, 2020 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-32322155

RESUMEN

Coprecipitation can be an effective treatment method for the removal of environmentally relevant metals from industrial wastewaters such as produced waters from the oil and gas industry. The precipitation of barite, BaSO4, through the addition of sulfate removes barium while coprecipitating strontium and other alkaline earth metals even when these are present at concentrations below their solubility limit. Among other analytical methods, X-ray fluorescence (XRF) nanospectroscopy at the Hard X-ray Nanoprobe (HXN) beamline at the National Synchrotron Light Source II (NSLS-II) was used to quantify Sr incorporation into barite. Thermodynamic modeling of (Ba,Sr)SO4 solid solutions was done using solid solution-aqueous solution (SS-AS) theory. The quantitative, high-resolution nano-XRF data show clearly that the Sr content in (Ba,Sr)SO4 solid solutions varies widely among particles and even within a single particle. We observed substantial Sr incorporation that is far larger than thermodynamic models predict, likely indicating the formation of metastable solid solutions. We also observed that increasing barite supersaturation of the aqueous phase led to increased Sr incorporation, as predicted by available kinetic models. These results suggest that coprecipitation offers significant potential for designing treatment systems for aqueous metals' removal in desired metastable compositions. Solution conditions may be optimized to enhance the incorporation of Sr by increasing sulfate addition such that the barite saturation index remains above ∼3 or by increasing the aqueous Sr to Ba ratio.

7.
Environ Sci Technol ; 53(12): 7136-7144, 2019 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-31134804

RESUMEN

Efforts to develop safe and effective next-generation energy and carbon-storage technologies in the subsurface require novel means to control undesired fluid migration. Here we demonstrate that the carbonation of calcium silicates can produce reaction products that dramatically reduce the permeability of porous media and that are stable. Most calcium silicates react with CO2 to form solid carbonates but some polymorphs (here, pseudowollastonite, CaSiO3) can react to form a range of crystalline calcium silicate hydrates (CCSHs) at intermediate pH. High-pressure (1.1-15.5 MPa) column and batch experiments were conducted at a range of temperatures (75-150 °C) and reaction products were characterized using SEM-EDS and synchrotron µXRD and µXRF. Two characteristics of CCSH precipitation were observed, revealing unique properties for permeability control relative to carbonate precipitates. First, precipitation of CCSHs tends to occur on the surface of sand grains and into pore throats, indicating that small amounts of precipitation relative to the total pore volume can effectively block flow, compared to carbonates which precipitate uniformly throughout the pore space. Second, the precipitated CCSHs are more stable at low pH conditions, which may form more secure barriers to flow, compared to carbonates, which dissolve under acidic conditions.


Asunto(s)
Dióxido de Carbono , Silicatos , Compuestos de Calcio , Carbonatos , Permeabilidad
8.
Environ Eng Sci ; 36(1): 90-101, 2019 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-30713428

RESUMEN

Underground fractures serve as flow conduits, and they may produce unwanted migration of water and other fluids in the subsurface. An example is the migration and leakage of greenhouse gases in the context of geologic carbon sequestration. This study has generated new understanding about how acids erode carbonate fracture surfaces and the positive feedback between reaction and flow. A two-dimensional reactive transport model was developed and used to investigate the extent to which geochemical factors influence fracture permeability and transmissivity evolution in carbonate rocks. The only mineral modeled as reactive is calcite, a fast-reacting mineral that is abundant in subsurface formations. The X-ray computed tomography dataset from a previous experimental study of fractured cores exposed to carbonic acid served as a testbed to benchmark the model simulation results. The model was able to capture not only erosion of fracture surfaces but also the specific phenomenon of channelization, which produces accelerating transmissivity increase. Results corroborated experimental findings that higher reactivity of the influent solution leads to strong channelization without substantial mineral dissolution. Simulations using mineral maps of calcite in a specimen of Amherstburg limestone demonstrated that mineral heterogeneity can either facilitate or suppress the development of flow channels depending on the spatial patterns of reactive mineral. In these cases, fracture transmissivity may increase rapidly, increase slowly, or stay constant, and for all these possibilities, the calcite mineral continues to dissolve. Collectively, these results illustrate that fluid chemistry and mineral spatial patterns need to be considered in predictions of reaction-induced fracture alteration and risks of fluid migration.

9.
Sci Rep ; 8(1): 13041, 2018 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-30158629

RESUMEN

Scientists have long suspected that compositionally zoned particles can form under far-from equilibrium precipitation conditions, but their inferences have been based on bulk solid and solution measurements. We are the first to directly observe nanoscale trace element compositional zonation in <10 µm-sized particles using X-ray fluorescence nanospectroscopy at the Hard X-ray Nanoprobe (HXN) Beamline at National Synchrotron Light Source II (NSLS-II). Through high-resolution images, compositional zonation was observed in barite (BaSO4) particles precipitated from aqueous solution, in which Sr2+ cations as well as HAsO42- anions were co-precipitated into (Ba,Sr)SO4 or Ba(SO4,HAsO4) solid solutions. Under high salinity conditions (NaCl ≥ 1.0 M), bands contained ~3.5 to ~5 times more trace element compared to the center of the particle formed in early stages of particle growth. Quantitative analysis of Sr and As fractional substitution allowed us to determine that different crystallographic growth directions incorporated trace elements to different extents. These findings provide supporting evidence that barite solid solutions have great potential for trace element incorporation; this has significant implications for environmental and engineered systems that remove hazardous substances from water.

10.
Environ Sci Technol ; 52(17): 10144-10152, 2018 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-30091904

RESUMEN

Fractures present environmental risks for subsurface engineering activities, such as geologic storage of greenhouse gases, because of the possibility of unwanted upward fluid migration. The risks of fluid leakage may be exacerbated if fractures are subjected to physical and chemical perturbations that alter their geometry. This study investigated this by constructing a 2D fracture model to numerically simulate fluid flow, acid-driven reactions, and mechanical deformation. Three rock mineralogies were simulated: a limestone with 100% calcite, a limestone with 68% calcite, and a banded shale with 34% calcite. One might expect transmissivity to increase fastest for rocks with more calcite due to its high solubility and fast reaction rate. Yet, results show that initially transmissivity increases fastest for rocks with less calcite because of their ability to deliver unbuffered-acid downstream faster. Moreover, less reactive minerals become persistent asperities that sustain mechanical support within the fracture. However, later in the simulations, the spatial pattern of less reactive mineral, not abundance, controls transmissivity evolution. Results show that a banded mineral pattern creates persistent bottlenecks, prevents channelization, and stabilizes transmissivity. For sites for geologic storage of CO2 that have carbonate caprocks, banded mineral variation may limit reactive evolution of fracture transmissivity and increase storage reliability.


Asunto(s)
Carbonato de Calcio , Carbonatos , Minerales , Reproducibilidad de los Resultados , Solubilidad
11.
Environ Eng Sci ; 33(10): 719-724, 2016 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-28031695

RESUMEN

Environmental engineers have played a critical role in improving human and ecosystem health over the past several decades. These contributions have focused on providing clean water and air as well as managing waste streams and remediating polluted sites. As environmental problems have become more global in scale and more deeply entrenched in sociotechnical systems, the discipline of environmental engineering must grow to be ready to respond to the challenges of the coming decades. Here we make the case that environmental engineers should play a leadership role in the development of climate change mitigation technologies at the carbon-water nexus (CWN). Climate change, driven largely by unfettered emissions of fossil carbon into the atmosphere, is a far-reaching and enormously complex environmental risk with the potential to negatively affect food security, human health, infrastructure, and other systems. Solving this problem will require a massive mobilization of existing and innovative new technology. The environmental engineering community is uniquely positioned to do pioneering work at the CWN using a skillset that has been honed, solving related problems. The focus of this special issue, on "The science and innovation of emerging subsurface energy technologies," provides one example domain within which environmental engineers and related disciplines are beginning to make important contributions at the CWN. In this article, we define the CWN and describe how environmental engineers can bring their considerable expertise to bear in this area. Then we review some of the topics that appear in this special issue, for example, mitigating the impacts of hydraulic fracturing and geologic carbon storage, and we provide perspective on emergent research directions, for example, enhanced geothermal energy, energy storage in sedimentary formations, and others.

12.
Environ Sci Technol ; 50(10): 4923-31, 2016 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-27052112

RESUMEN

We developed the Leakage Risk Monetization Model (LRiMM) which integrates simulation of CO2 leakage from geologic CO2 storage reservoirs with estimation of monetized leakage risk (MLR). Using geospatial data, LRiMM quantifies financial responsibility if leaked CO2 or brine interferes with subsurface resources, and estimates the MLR reduction achievable by remediating leaks. We demonstrate LRiMM with simulations of 30 years of injection into the Mt. Simon sandstone at two locations that differ primarily in their proximity to existing wells that could be leakage pathways. The peak MLR for the site nearest the leakage pathways ($7.5/tCO2) was 190x larger than for the farther injection site, illustrating how careful siting would minimize MLR in heavily used sedimentary basins. Our MLR projections are at least an order of magnitude below overall CO2 storage costs at well-sited locations, but some stakeholders may incur substantial costs. Reliable methods to detect and remediate leaks could further minimize MLR. For both sites, the risk of CO2 migrating to potable aquifers or reaching the atmosphere was negligible due to secondary trapping, whereby multiple impervious sedimentary layers trap CO2 that has leaked through the primary seal of the storage formation.


Asunto(s)
Dióxido de Carbono , Geología , Agua Subterránea , Modelos Teóricos , Pozos de Agua
13.
Environ Sci Technol ; 49(16): 10226-34, 2015 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-26205851

RESUMEN

Fractures in geological formations may enable migration of environmentally relevant fluids, as in leakage of CO2 through caprocks in geologic carbon sequestration. We investigated geochemically induced alterations of fracture geometry in Indiana Limestone specimens. Experiments were the first of their kind, with periodic high-resolution imaging using X-ray computed tomography (xCT) scanning while maintaining high pore pressure (100 bar). We studied two CO2-acidified brines having the same pH (3.3) and comparable thermodynamic disequilibrium but different equilibrated pressures of CO2 (PCO2 values of 12 and 77 bar). High-PCO2 brine has a faster calcite dissolution kinetic rate because of the accelerating effect of carbonic acid. Contrary to expectations, dissolution extents were comparable in the two experiments. However, progressive xCT images revealed extensive channelization for high PCO2, explained by strong positive feedback between ongoing flow and reaction. The pronounced channel increasingly directed flow to a small region of the fracture, which explains why the overall dissolution was lower than expected. Despite this, flow simulations revealed large increases in permeability in the high-PCO2 experiment. This study shows that the permeability evolution of dissolving fractures will be larger for faster-reacting fluids. The overall mechanism is not because more rock dissolves, as would be commonly assumed, but because of accelerated fracture channelization.


Asunto(s)
Ácidos/química , Dióxido de Carbono/análisis , Secuestro de Carbono , Carbonatos/química , Sedimentos Geológicos/química , Sales (Química)/química , Calcio/química , Simulación por Computador , Cinética , Permeabilidad , Presión , Tomografía Computarizada por Rayos X
14.
Environ Sci Technol ; 48(24): 14344-51, 2014 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-25420634

RESUMEN

Reactions of CO2 with magnesium silicate minerals to precipitate magnesium carbonates can result in stable carbon sequestration. This process can be employed in ex situ reactors or during geologic carbon sequestration in magnesium-rich formations. The reaction of aqueous CO2 with the magnesium silicate mineral forsterite was studied in systems with transport controlled by diffusion. The approach integrated bench-scale experiments, an in situ spectroscopic technique, and reactive transport modeling. Experiments were performed using a tube packed with forsterite and open at one end to a CO2-rich solution. The location and amounts of carbonate minerals that formed were determined by postexperiment characterization of the solids. Complementing this ex situ characterization, (13)C NMR spectroscopy tracked the inorganic carbon transport and speciation in situ. The data were compared with the output of reactive transport simulations that accounted for diffusive transport processes, aqueous speciation, and the forsterite dissolution rate. All three approaches found that the onset of magnesium carbonate precipitation was spatially localized about 1 cm from the opening of the forsterite bed. Magnesite was the dominant reaction product. Geochemical gradients that developed in the diffusion-limited zones led to locally supersaturated conditions at specific locations even while the volume-averaged properties of the system remained undersaturated.


Asunto(s)
Dióxido de Carbono/química , Silicatos de Magnesio/química , Magnesio/química , Compuestos de Silicona/química , Secuestro de Carbono , Carbonatos/química , Precipitación Química , Difusión , Presión , Temperatura , Agua/química
15.
Environ Eng Sci ; 30(4): 187-193, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23633894

RESUMEN

Geochemical reactions may alter the permeability of leakage pathways in caprocks, which serve a critical role in confining CO2 in geologic carbon sequestration. A caprock specimen from a carbonate formation in the Michigan sedimentary Basin was fractured and studied in a high-pressure core flow experiment. Inflowing brine was saturated with CO2 at 40°C and 10 MPa, resulting in an initial pH of 4.6, and had a calcite saturation index of -0.8. Fracture permeability decreased during the experiment, but subsequent analyses did not reveal calcite precipitation. Instead, experimental observations indicate that calcite dissolution along the fracture pathway led to mobilization of less soluble mineral particles that clogged the flow path. Analyses of core sections via electron microscopy, synchrotron-based X-ray diffraction imaging, and the first application of microbeam Ca K-edge X-ray absorption near edge structure, provided evidence that these occlusions were fragments from the host rock rather than secondary precipitates. X-ray computed tomography showed a significant loss of rock mass within preferential flow paths, suggesting that dissolution also removed critical asperities and caused mechanical closure of the fracture. The decrease in fracture permeability despite a net removal of material along the fracture pathway demonstrates a nonintuitive, inverse relationship between dissolution and permeability evolution in a fractured carbonate caprock.

16.
Environ Toxicol Chem ; 29(10): 2161-8, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20872677

RESUMEN

Microbiological populations in natural and engineered systems may experience multiple exposures to chemical stressors, which may affect system functions. The impact of such exposures on the metabolism of a population of Pseudomonas aeruginosa was studied using respirometry. Two serial exposures to low concentrations of 2,4-dinitrophenol (DNP), pentachlorophenol (PCP), or N-ethyl maleimide (NEM) did not affect metabolism beyond that expected for a single exposure. However, at higher concentrations, three exposures to DNP led to a combination of metabolic stress and resilience in the population. At a low DNP concentration of 400 mg/L, multiple exposures led to increased stress but indicated no development of resilience. At a high DNP concentration of 1,200 mg/L, no biological activity was observed, indicating that the population did not survive the exposure. At intermediate concentrations of 800 and 900 mg/L DNP, stress was observed, but it was found to decrease after multiple exposures. This, combined with the observation that the size of the population decreased, indicated that resilience in the population had developed because of elimination of the weaker organisms in the population. In contrast, the lack of resilience at the lower DNP concentration was attributed to the survival of the strong as well as weak members, lowering the resilience of the population as a whole. The development of resilience within a window of stressor concentrations is an important finding with implications for predicting the performance of biotreatment processes and biosensor technologies and for interpreting ecotoxicity risk assessments.


Asunto(s)
Dinitrofenoles/toxicidad , Microbiología del Suelo , Contaminantes del Suelo/toxicidad , Microbiología del Agua , Contaminantes Químicos del Agua/toxicidad , Biomasa , Cromatografía Líquida de Alta Presión
17.
Environ Sci Technol ; 44(1): 349-55, 2010 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-20000315

RESUMEN

Sulfur dioxide is a possible co-injectant with carbon dioxide in the context of geologic sequestration. Because of the potential of SO2 to acidify formation brines, the extent of SO2 dissolution from the CO2 phase will determine the viability of co-injection. Pressure-, temperature-, and salinity-adjusted values of the SO2 Henry's Law constant and fugacity coefficient were determined. They are predicted to decrease with depth, such that the solubility of SO2 is a factor of 0.04 smaller than would be predicted without these adjustments. To explore the potential effects of transport limitations, a nonsteady-state model of SO2 diffusion through a stationary cone-shaped plume of supercritical CO2 was developed. This model represents an end-member scenario of diffusion-controlled dissolution of SO2, to contrast with models of complete phase equilibrium. Simulations for conditions corresponding to storage depths of 0.8-2.4 km revealed that after 1000 years, 65-75% of the SO2 remains in the CO2 phase. This slow release of SO2 would largely mitigate its impact on brine pH. Furthermore, small amounts of SO2 are predicted to have a negligible effect on the critical point of CO2 but will increase phase density by as much as 12% for mixtures containing 5% SO2.


Asunto(s)
Dióxido de Carbono/química , Geología , Dióxido de Azufre/química , Modelos Teóricos , Solubilidad
18.
Chemosphere ; 71(3): 474-83, 2008 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-18262219

RESUMEN

Chemical stress may alter microbiological metabolism and this, in turn, may affect the natural and engineered systems where these organisms function. The impact of chemical stress on microbiological metabolism was investigated using model chemicals 2,4-dinitrophenol (DNP), pentachlorophenol (PCP), and N-ethylmaleimide (NEM). Biological activity of Pseudomonas aeruginosa was measured in batch systems, with and without stressors at sub-lethal concentrations. Stressor DNP, between 49 and 140 mg l(-1), and PCP, at 15 and 38 mg l(-1), caused decreases in biomass growth yields, but did not inhibit substrate utilization rates. These effects increased with stressor concentrations, showing as much as a 10% yield reduction at the highest DNP concentration. This suggests that a portion of carbon and energy resources are diverted from growth and used in stress management and protection. Stressor DNP, between 300 and 700 mg l(-1), and PCP at 85 mg l(-1) caused decreases in growth yields and substrate utilization rates. This suggests an inhibition of both anabolism and catabolism. Stressor NEM was the most potent, inhibiting biological activity at concentrations as low as 2.7 mg l(-1). These findings will ultimately be useful in better monitoring and management of biological treatment operations and contaminated natural systems.


Asunto(s)
2,4-Dinitrofenol/toxicidad , Etilmaleimida/toxicidad , Pentaclorofenol/toxicidad , Pseudomonas aeruginosa/efectos de los fármacos , Glucosa/metabolismo , Oxígeno/metabolismo , Pseudomonas aeruginosa/crecimiento & desarrollo , Pseudomonas aeruginosa/metabolismo
19.
Environ Toxicol Chem ; 25(7): 1746-56, 2006 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-16833134

RESUMEN

Biodegradation kinetics were studied for binary and complex mixtures of nine polycyclic aromatic hydrocarbons (PAHs): Naphthalene, 1-methylnaphthalene, 2-methylnaphthalene, 2-ethylnaphthalene, phenanthrene, anthracene, pyrene, fluorene, and fluoranthene. Discrepancies between the observed biodegradation rates and those predicted by a sole-substrate model indicate that significant substrate interactions occurred in both the binary and complex-mixture experiments. For all compounds except naphthalene, biodegradation was enhanced. The observations were compared to predictions from two multisubstrate biodegradation kinetic models: One that accounts for competitive inhibition, and one that does not. Both models are fully predictive in that parameters had been determined from an independent set of sole-substrate experiments. In the binary experiments, the major multisubstrate effect was biomass enhancement as a result of growth on naphthalene. Substrate interactions were orders of magnitude larger for most compounds in the complex mixtures, but significant competitive inhibition effects counteracted some of the biomass enhancement effect. The present study has demonstrated that the sole-substrate model is inadequate to describe multisubstrate biodegradation kinetics for a broad range of PAH mixtures. Whereas the multisubstrate model without inhibition did an adequate job of predicting the observed effects in some cases, we advocate the use of the multisubstrate model with inhibition for similar modeling efforts in light of the evidence that the model was correct more often than not. Theory supports its use because of the common enzyme pathways for biodegradation of PAHs.


Asunto(s)
Hidrocarburos Policíclicos Aromáticos/química , Hidrocarburos Policíclicos Aromáticos/metabolismo , Biomasa , Cinética , Modelos Biológicos , Sphingomonas/metabolismo , Especificidad por Sustrato
20.
Environ Toxicol Chem ; 25(4): 912-20, 2006 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-16629130

RESUMEN

A theoretical analysis was performed to examine the role of naphthalene dioxygenase (NDO) enzymes in determining differences in biodegradability and biodegradation rates of two- to four-ring polycyclic aromatic hydrocarbons (PAHs) via oxygenation and desaturation reactions. Investigation of the thermodynamics of PAH biodegradation reactions catalyzed by NDO revealed that enthalpies of reaction can explain reaction patterns or regioselectivity of the enzyme in limited cases. Molecular modeling analysis of the size and shape constraints of PAH-enzyme interactions suggests that PAHs bigger than approximately four rings and compounds with alpha substituents or other structural features contributing to increased width at the end of the substrate near the active site are expected to have binding difficulties. This explains some regioselectivity observations, in that thermodynamically favorable sites on some PAH molecules cannot be positioned correctly to be oxidized at the active site. The enzyme fit analysis also suggests that slower biodegradation rates are expected for compounds with larger widths because of the unique positioning that is required for reaction to occur. An inverse relationship between a molecular descriptor of compound width and previously obtained biodegradation rates suggests that this descriptor may be valuable for predicting relative biodegradation rates of PAHs with dioxygenases other than NDO.


Asunto(s)
Modelos Moleculares , Complejos Multienzimáticos/metabolismo , Oxigenasas/metabolismo , Hidrocarburos Policíclicos Aromáticos/metabolismo , Biodegradación Ambiental , Catálisis , Cristalografía por Rayos X , Ciclización , Dioxigenasas , Estructura Molecular , Hidrocarburos Policíclicos Aromáticos/química , Termodinámica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...