Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Am J Trop Med Hyg ; 107(5): 1091-1098, 2022 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-36122681

RESUMEN

The Rift Valley fever virus (RVFV) MP-12 vaccine is a promising human and veterinary vaccine. Although the vaccine elicited neutralizing antibody (nAb) in human volunteers, the minimal antibody titer that is needed to afford protection is unknown. Therefore, this study was conducted to determine the minimal nAb titer elicited by the RVFV MP-12 vaccine in human volunteers that protected mice against lethal RVFV challenge as a surrogate assessment of the protective efficacy of the vaccine. Among volunteers who were vaccinated with the MP-12 vaccine during a phase II trial, sera with antibody titers of 1:20 collected 5 years post-vaccination (PV), 1:40 titer collected 2 years PV, and 1:80 titer collected 1 year PV was passively transferred to groups of BALB/c mice. Blood samples were obtained 1 day after passive transfer to determine the RVFV neutralizing nAb titer before challenge with pathogenic RVFV (strain ZH501). Our results indicated that 1 day after passive transfer of the immune sera, an approximate 4-fold reduction in circulating nAb titers was detected in the mice. The presence of RVFV nAb titers in the range of 1:5 to 1:20 were generally protective (75-100% survival). These results suggested that circulating titers of 1:5 or higher offer a high degree of protection by MP-12-elicited antibody in human volunteers. Also, the findings highlighted the value of using the BALB/c mouse RVFV challenge model as a surrogate for evaluating the protective nAb responses elicited by MP-12 and possible use for evaluating the efficacy of other RVFV vaccine candidates.


Asunto(s)
Fiebre del Valle del Rift , Virus de la Fiebre del Valle del Rift , Vacunas Virales , Ratones , Humanos , Animales , Voluntarios Sanos , Vacunas Atenuadas , Anticuerpos Antivirales , Anticuerpos Neutralizantes , Ratones Endogámicos BALB C , Modelos Animales de Enfermedad
2.
Clin Infect Dis ; 74(10): 1821-1830, 2022 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-34463715

RESUMEN

BACKGROUND: Lassa fever is a zoonotic, acute viral illness first identified in Nigeria in 1969. An estimate shows that the "at risk" seronegative population (in Sierra Leone, Guinea, and Nigeria) may be as high as 59 million, with an annual incidence of all illnesses of 3 million, and fatalities up to 67 000, demonstrating the serious impact of the disease on the region and global health. METHODS: Histopathologic evaluation, immunohistochemical assay, and electron microscopic examination were performed on postmortem tissue samples from 12 confirmed Lassa fever cases. RESULTS: Lassa fever virus antigens and viral particles were observed in multiple organ systems and cells, including cells in the mononuclear phagocytic system and other specialized cells where it had not been described previously. CONCLUSIONS: The immunolocalization of Lassa fever virus antigens in fatal cases provides novel insightful information with clinical and pathogenetic implications. The extensive involvement of the mononuclear phagocytic system, including tissue macrophages and endothelial cells, suggests participation of inflammatory mediators from this lineage with the resulting vascular dilatation and increasing permeability. Other findings indicate the pathogenesis of Lassa fever is multifactorial and additional studies are needed.


Asunto(s)
Fiebre de Lassa , Virosis , Células Endoteliales , Humanos , Incidencia , Fiebre de Lassa/epidemiología , Virus Lassa
3.
Vaccine X ; 5: 100060, 2020 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-32337506

RESUMEN

In November 2019, The World Health Organization (WHO) issued a draft set of Target Product Profiles (TPPs) describing optimal and minimally acceptable targets for vaccines against Rift Valley fever (RVF), a Phlebovirus with a three segmented genome, in both humans and ruminants. The TPPs contained rigid requirements to protect against genomic reassortment of live, attenuated vaccines (LAVs) with wild-type RVF virus (RVFV), which place undue constraints on development and regulatory approval of LAVs. We review the current LAVs in use and in development, and conclude that there is no evidence that reassortment between LAVs and wild-type RVFV has occurred during field use, that such a reassortment event if it occurred would have no untoward consequence, and that the TPPs should be revised to provide a more balanced assessment of the benefits versus the theoretical risks of reassortment.

4.
Syst Biol ; 66(3): 463-473, 2017 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-27798405

RESUMEN

Botanical, mycological, zoological, and prokaryotic species names follow the Linnaean format, consisting of an italicized Latinized binomen with a capitalized genus name and a lower case species epithet (e.g., Homo sapiens). Virus species names, however, do not follow a uniform format, and, even when binomial, are not Linnaean in style. In this thought exercise, we attempted to convert all currently official names of species included in the virus family Arenaviridae and the virus order Mononegavirales to Linnaean binomials, and to identify and address associated challenges and concerns. Surprisingly, this endeavor was not as complicated or time-consuming as even the authors of this article expected when conceiving the experiment. [Arenaviridae; binomials; ICTV; International Committee on Taxonomy of Viruses; Mononegavirales; virus nomenclature; virus taxonomy.].


Asunto(s)
Clasificación , Virus , Terminología como Asunto
5.
Vaccine ; 34(4): 424-429, 2016 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-26718688

RESUMEN

Rift Valley fever (RVF) poses a risk as a potential agent in bioterrorism or agroterrorism. A live attenuated RVF vaccine (RVF MP-12) has been shown to be safe and protective in animals and showed promise in two initial clinical trials. In the present study, healthy adult human volunteers (N=56) received a single injection of (a) RVF MP-12, administered subcutaneously (SQ) at a concentration of 10(4.7) plaque-forming units (pfu) (SQ Group); (b) RVF MP-12, administered intramuscularly (IM) at 10(3.4)pfu (IM Group 1); (c) RVF MP-12, administered IM at 10(4.4)pfu (IM Group 2); or (d) saline (Placebo Group). The vaccine was well tolerated by volunteers in all dose and route groups. Infrequent and minor adverse events were seen among recipients of both placebo and RVF MP-12. One subject had viremia detectable by direct plaque assay, and six subjects from IM Group 2 had transient low-titer viremia detectable only by nucleic acid amplification. Of the 43 vaccine recipients, 40 (93%) achieved neutralizing antibodies (measured as an 80% plaque reduction neutralization titer [PRNT80]) as well as RVF-specific IgM and IgG. The highest peak geometric mean PRNT80 titers were observed in IM Group 2. Of 34 RVF MP-12 recipients available for testing 1 year following inoculation, 28 (82%) remained seropositive (PRNT80≥1:20); this included 20 of 23 vaccinees (87%) from IM Group 2. The live attenuated RVF MP-12 vaccine was safe and immunogenic at the doses and routes studied. Given the need for an effective vaccine against RVF virus, further evaluation in humans is warranted.


Asunto(s)
Fiebre del Valle del Rift/prevención & control , Vacunas Virales/administración & dosificación , Adulto , Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/sangre , Relación Dosis-Respuesta Inmunológica , Femenino , Humanos , Inmunoglobulina G/sangre , Inmunoglobulina M/sangre , Inyecciones Intramusculares , Masculino , Vacunas Atenuadas/administración & dosificación , Viremia/diagnóstico , Adulto Joven
6.
Vaccine ; 34(4): 523-530, 2016 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-26706271

RESUMEN

An outbreak or deliberate release of Rift Valley fever (RVF) virus could have serious public health and socioeconomic consequences. A safe RVF vaccine capable of eliciting long-lasting immunity after a single injection is urgently needed. The live attenuated RVF MP-12 vaccine candidate has shown promise in Phase 1 clinical trials; no evidence of reversion to virulence has been identified in numerous animal studies. The objective of this Phase 2 clinical trial was to (a) further examine the safety and immunogenicity of RVF MP-12 in RVF virus-naïve humans and (b) characterize isolates of RVF MP-12 virus recovered from the blood of vaccinated subjects to evaluate the genetic stability of MP-12 attenuation. We found that RVF MP-12 was well tolerated, causing mostly mild reactions that resolved without sequelae. Of 19 subjects, 18 (95%) and 19 (100%) achieved, respectively, 80% and 50% plaque reduction neutralization titers (PRNT80 and PRNT50)≥1:20 by postvaccination day 28. All 18 PRNT80 responders maintained PRNT80 and PRNT50≥1:40 until at least postvaccination month 12. Viremia was undetectable in the plasma of any subject by direct plaque assay techniques. However, 5 of 19 vaccinees were positive for MP-12 isolates in plasma by blind passage of plasma on Vero cells. Vaccine virus was also recovered from buffy coat material from one of those vaccinees and from one additional vaccinee. Through RNA sequencing of MP-12 isolates, we found no reversions of amino acids to those of the parent virulent virus (strain ZH548). Five years after a single dose of RVF MP-12 vaccine, 8 of 9 vaccinees (89%) maintained a PRNT80≥1:20. These findings support the continued development of RVF MP-12 as a countermeasure against RVF virus in humans.


Asunto(s)
Fiebre del Valle del Rift/prevención & control , Vacunas Virales/uso terapéutico , Adulto , Animales , Anticuerpos Antivirales/sangre , Chlorocebus aethiops , Femenino , Inestabilidad Genómica , Humanos , Masculino , Ratones , Persona de Mediana Edad , Pruebas de Neutralización , Virus de la Fiebre del Valle del Rift/genética , Virus de la Fiebre del Valle del Rift/aislamiento & purificación , Virus de la Fiebre del Valle del Rift/patogenicidad , Vacunas Atenuadas/efectos adversos , Vacunas Atenuadas/inmunología , Vacunas Atenuadas/uso terapéutico , Células Vero , Vacunas Virales/efectos adversos , Vacunas Virales/inmunología , Virulencia , Adulto Joven
7.
J Hered ; 106(6): 728-33, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26546799

RESUMEN

The Rift Valley Fever virus (RVFV) presents an epidemic and epizootic threat in sub-Saharan Africa, Egypt, and the Arabian Peninsula, and has furthermore recently gained attention as a potential weapon of bioterrorism due to its ability to infect both livestock and humans. Inbred rat strains show similar characteristic responses to the disease as humans and livestock, making them a suitable model species. Previous studies had indicated differences in susceptibility to RVFV hepatic disease among various rat strains, including a higher susceptibility of Wistar-Furth (WF) compared to a more resistant Lewis (LEW) strain. Further study revealed that this resistance trait exhibits the pattern of a major dominant gene inherited in Mendelian fashion. A genome scan of a congenic WF.LEW strain, created from the susceptible WF and resistant LEW strains and itself resistant to infection with RVFV, revealed 2 potential regions for the location of the gene, 1 on chromosome 3 and the other on chromosome 9. Through backcrossing of WF.LEW rats to WF rats, genotyping offspring using SNPs and microsatellites, and viral challenges of 3 N1 litters, we have mapped the gene to the distal end of chromosome 3.


Asunto(s)
Mapeo Cromosómico , Resistencia a la Enfermedad/genética , Fiebre del Valle del Rift/genética , Animales , Animales Congénicos , Cruzamientos Genéticos , Femenino , Genes Dominantes , Marcadores Genéticos , Genotipo , Haplotipos , Masculino , Repeticiones de Microsatélite , Polimorfismo de Nucleótido Simple , Ratas , Ratas Endogámicas Lew , Ratas Endogámicas WF , Virus de la Fiebre del Valle del Rift , Análisis de Secuencia de ADN
9.
Arch Virol ; 160(7): 1851-74, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25935216

RESUMEN

Until recently, members of the monogeneric family Arenaviridae (arenaviruses) have been known to infect only muroid rodents and, in one case, possibly phyllostomid bats. The paradigm of arenaviruses exclusively infecting small mammals shifted dramatically when several groups independently published the detection and isolation of a divergent group of arenaviruses in captive alethinophidian snakes. Preliminary phylogenetic analyses suggest that these reptilian arenaviruses constitute a sister clade to mammalian arenaviruses. Here, the members of the International Committee on Taxonomy of Viruses (ICTV) Arenaviridae Study Group, together with other experts, outline the taxonomic reorganization of the family Arenaviridae to accommodate reptilian arenaviruses and other recently discovered mammalian arenaviruses and to improve compliance with the Rules of the International Code of Virus Classification and Nomenclature (ICVCN). PAirwise Sequence Comparison (PASC) of arenavirus genomes and NP amino acid pairwise distances support the modification of the present classification. As a result, the current genus Arenavirus is replaced by two genera, Mammarenavirus and Reptarenavirus, which are established to accommodate mammalian and reptilian arenaviruses, respectively, in the same family. The current species landscape among mammalian arenaviruses is upheld, with two new species added for Lunk and Merino Walk viruses and minor corrections to the spelling of some names. The published snake arenaviruses are distributed among three new separate reptarenavirus species. Finally, a non-Latinized binomial species name scheme is adopted for all arenavirus species. In addition, the current virus abbreviations have been evaluated, and some changes are introduced to unequivocally identify each virus in electronic databases, manuscripts, and oral proceedings.


Asunto(s)
Infecciones por Arenaviridae/veterinaria , Infecciones por Arenaviridae/virología , Arenavirus/clasificación , Animales , Infecciones por Arenaviridae/historia , Arenavirus/genética , Arenavirus/aislamiento & purificación , Historia del Siglo XX , Historia del Siglo XXI , Humanos , Filogenia , Virología/historia , Virología/tendencias
10.
mBio ; 6(2): e00137, 2015 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-25698835

RESUMEN

Available evidence demonstrates that direct patient contact and contact with infectious body fluids are the primary modes for Ebola virus transmission, but this is based on a limited number of studies. Key areas requiring further study include (i) the role of aerosol transmission (either via large droplets or small particles in the vicinity of source patients), (ii) the role of environmental contamination and fomite transmission, (iii) the degree to which minimally or mildly ill persons transmit infection, (iv) how long clinically relevant infectiousness persists, (v) the role that "superspreading events" may play in driving transmission dynamics, (vi) whether strain differences or repeated serial passage in outbreak settings can impact virus transmission, and (vii) what role sylvatic or domestic animals could play in outbreak propagation, particularly during major epidemics such as the 2013-2015 West Africa situation. In this review, we address what we know and what we do not know about Ebola virus transmission. We also hypothesize that Ebola viruses have the potential to be respiratory pathogens with primary respiratory spread.


Asunto(s)
Transmisión de Enfermedad Infecciosa , Fiebre Hemorrágica Ebola/transmisión , África Occidental/epidemiología , Animales , Ebolavirus/aislamiento & purificación , Fiebre Hemorrágica Ebola/virología , Humanos , Zoonosis/transmisión , Zoonosis/virología
12.
PLoS One ; 9(6): e99610, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24918927

RESUMEN

Junin virus (JUNV) is the etiological agent of Argentine hemorrhagic fever (AHF), a human disease with a high case-fatality rate. It is widely accepted that arenaviral infections, including JUNV infections, are generally non-cytopathic. In contrast, here we demonstrated apoptosis induction in human lung epithelial carcinoma (A549), human hepatocarcinoma and Vero cells upon infection with the attenuated Candid#1 strain of, JUNV as determined by phosphatidylserine (PS) translocation, Caspase 3 (CASP3) activation, Poly (ADP-ribose) polymerase (PARP) cleavage and/or chromosomal DNA fragmentation. Moreover, as determined by DNA fragmentation, we found that the pathogenic Romero strain of JUNV was less cytopathic than Candid#1 in human hepatocarcinoma and Vero, but more apoptotic in A549 and Vero E6 cells. Additionally, we found that JUNV-induced apoptosis was enhanced by RIG-I signaling. Consistent with the previously reported role of RIG-I like helicase (RLH) signaling in initiating programmed cell death, we showed that cell death or DNA fragmentation of Candid#1-infected A549 cells was decreased upon siRNA or shRNA silencing of components of RIG-I pathway in spite of increased virus production. Similarly, we observed decreased DNA fragmentation in JUNV-infected human hepatocarcinoma cells deficient for RIG-I when compared with that of RIG-I-competent cells. In addition, DNA fragmentation detected upon Candid#1 infection of type I interferon (IFN)-deficient Vero cells suggested a type I IFN-independent mechanism of apoptosis induction in response to JUNV. Our work demonstrated for the first time apoptosis induction in various cells of mammalian origin in response to JUNV infection and partial mechanism of this cell death.


Asunto(s)
Apoptosis/genética , ARN Helicasas DEAD-box/metabolismo , Fiebre Hemorrágica Americana/genética , Interferón Tipo I/genética , Virus Junin/inmunología , Animales , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/inmunología , Carcinoma Hepatocelular/virología , Muerte Celular/genética , Línea Celular Tumoral , Chlorocebus aethiops , Proteína 58 DEAD Box , Fragmentación del ADN , Fiebre Hemorrágica Americana/inmunología , Fiebre Hemorrágica Americana/virología , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/inmunología , Neoplasias Hepáticas/virología , ARN Interferente Pequeño/genética , Receptores Inmunológicos , Transducción de Señal/genética , Células Vero
13.
Am J Trop Med Hyg ; 90(6): 993-1002, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24710609

RESUMEN

Junín virus (JUNV) is endemic to the fertile Pampas of Argentina, maintained in nature by the rodent host Calomys musculinus, and the causative agent of Argentine hemorrhagic fever (AHF), which is characterized by vascular dysfunction and fluid distribution abnormalities. Clinical as well as experimental studies implicate involvement of the endothelium in the pathogenesis of AHF, although little is known of its role. JUNV has been shown to result in productive infection of endothelial cells (ECs) in vitro with no visible cytopathic effects. In this study, we show that direct JUNV infection of primary human ECs results in increased vascular permeability as measured by electric cell substrate impedance sensing and transwell permeability assays. We also show that EC adherens junctions are disrupted during virus infection, which may provide insight into the role of the endothelium in the pathogenesis of AHF and possibly, other viral hemorrhagic fevers.


Asunto(s)
Uniones Adherentes/virología , Dextranos/metabolismo , Fluoresceína-5-Isotiocianato/análogos & derivados , Fiebre Hemorrágica Americana/virología , Virus Junin/fisiología , Sigmodontinae/virología , Animales , Antígenos CD/metabolismo , Cadherinas/metabolismo , Cateninas/metabolismo , Permeabilidad de la Membrana Celular , Quimiocina CCL2/metabolismo , Reservorios de Enfermedades , Fluoresceína-5-Isotiocianato/metabolismo , Células Endoteliales de la Vena Umbilical Humana , Humanos , Interleucina-6/metabolismo , Permeabilidad , Catenina delta
14.
J Virol ; 88(7): 3902-10, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24453361

RESUMEN

The outbreak of Middle East respiratory syndrome coronavirus (MERS-CoV) infections and diseases represents a potential threat for worldwide spread and requires development of effective therapeutic strategies. In this study, we revealed a novel positive function of an exchange protein directly activated by cyclic AMP 1 (cAMP-1; Epac-1) on MERS-CoV replication. Specifically, we have shown that Epac-specific inhibitor treatment or silencing Epac-1 gene expression rendered cells resistant to viral infection. We believe Epac-1 inhibitors deserve further study as potential therapeutic agents for MERS-CoV infection.


Asunto(s)
Coronavirus/efectos de los fármacos , Coronavirus/fisiología , AMP Cíclico/metabolismo , Factores de Intercambio de Guanina Nucleótido/antagonistas & inhibidores , Interacciones Huésped-Patógeno , Replicación Viral/efectos de los fármacos , Animales , Línea Celular , Chlorocebus aethiops , Técnicas de Silenciamiento del Gen , Factores de Intercambio de Guanina Nucleótido/genética , Humanos
15.
Vaccine ; 32(20): 2345-9, 2014 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-24462482

RESUMEN

Rift Valley fever virus (RVFV), a mosquito-borne virus in the Bunyaviridae family and Phlebovirus genus, causes RVF, a disease of ruminants and man, endemic in Sub-Saharan African countries. However, outbreaks in Yemen and Saudi Arabia demonstrate the ability for RVFV to spread into virgin territory and thus the need exists to develop safe and efficacious vaccines that can be used outside the endemic zones. Commercial RVFV vaccines are available but have limitations that prevent their use in disease-free countries. Consequently, there are ongoing efforts to develop and/or improve RVFV vaccines with global acceptability. In this study a previously developed MP-12-derived vaccine candidate with a large deletion of the NSm gene in the pre Gn region of the M segment (arMP-12-ΔNSm21/384) developed by T. Ikegami, that was already shown to be safe in pregnant sheep causing neither abortion nor fetal malformation was further evaluated. This vaccine was tested for protection of sheep from viremia and fever following challenge with virulent RVFV ZH501 strain. A single vaccination with arMP-12-ΔNSm21/384 fully protected sheep when challenged four weeks post vaccination, thereby demonstrating that this vaccine is efficacious in protecting these animals from RVFV infection.


Asunto(s)
Fiebre del Valle del Rift/veterinaria , Enfermedades de las Ovejas/prevención & control , Vacunas Virales/inmunología , Animales , Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/sangre , Inmunidad Celular , Interferón gamma/inmunología , Pruebas de Neutralización , ARN Viral/sangre , Fiebre del Valle del Rift/prevención & control , Virus de la Fiebre del Valle del Rift , Ovinos , Enfermedades de las Ovejas/virología , Vacunas Atenuadas/inmunología , Viremia/prevención & control
16.
Am J Trop Med Hyg ; 89(3): 495-7, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23918215

RESUMEN

Rift Valley Fever (RVF) is a significant threat to human health because it can progress to retinitis, encephalitis, and hemorrhagic fever. The timing of onset of Rift Valley Fever virus (RVFV) retinitis suggests an autoimmune origin. To determine whether RVFV retinitis is associated with increased levels of IgG against retinal tissue, we measured and compared levels of IgG against healthy human eye tissue by immunohistochemical analysis. We found that serum samples from RVFV-exposed Kenyans with retinitis (n = 8) were slightly more likely to have antibodies against retinal tissue than control populations, but the correlation was not statistically significant. Further investigation into the possible immune pathogenesis of RVFV retinitis could lead to improved therapies to prevent or treat this severe complication.


Asunto(s)
Autoanticuerpos/sangre , Enfermedades Autoinmunes/virología , Retinitis/virología , Fiebre del Valle del Rift/virología , Virus de la Fiebre del Valle del Rift/aislamiento & purificación , Humanos , Inmunoglobulina G/sangre , Kenia , Virus de la Fiebre del Valle del Rift/genética
17.
J Virol ; 87(17): 9953-8, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23824802

RESUMEN

The newly emerged Middle East respiratory syndrome coronavirus (MERS-CoV) infects human bronchial epithelial Calu-3 cells. Unlike severe acute respiratory syndrome (SARS)-CoV, which exclusively infects and releases through the apical route, this virus can do so through either side of polarized Calu-3 cells. Infection results in profound apoptosis within 24 h irrespective of its production of titers that are lower than those of SARS-CoV. Together, our results provide new insights into the dissemination and pathogenesis of MERS-CoV and may indicate that the virus differs markedly from SARS-CoV.


Asunto(s)
Bronquios/virología , Coronavirus/fisiología , Coronavirus/patogenicidad , Apoptosis , Bronquios/patología , Línea Celular , Polaridad Celular , Efecto Citopatogénico Viral/fisiología , Células Epiteliales/patología , Células Epiteliales/virología , Humanos , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/patogenicidad , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/fisiología , Especificidad de la Especie , Internalización del Virus , Liberación del Virus/fisiología
18.
PLoS One ; 8(3): e59210, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23527138

RESUMEN

There is no licensed human vaccine currently available for Rift Valley Fever Virus (RVFV), a Category A high priority pathogen and a serious zoonotic threat. While neutralizing antibodies targeting the viral glycoproteins are protective, they appear late in the course of infection, and may not be induced in time to prevent a natural or bioterrorism-induced outbreak. Here we examined the immunogenicity of RVFV nucleocapsid (N) protein as a CD8(+) T cell antigen with the potential for inducing rapid protection after vaccination. HLA-A*0201 (A2)-restricted epitopic determinants were identified with N-specific CD8(+) T cells from eight healthy donors that were primed with dendritic cells transduced to express N, and subsequently expanded in vitro by weekly re-stimulations with monocytes pulsed with 59 15mer overlapping peptides (OLPs) across N. Two immunodominant epitopes, VT9 (VLSEWLPVT, N(121-129)) and IL9 (ILDAHSLYL, N165-173), were defined. VT9- and IL9-specific CD8(+) T cells identified by tetramer staining were cytotoxic and polyfunctional, characteristics deemed important for viral control in vivo. These peptides induced specific CD8(+) T cell responses in A2-transgenic mice, and more importantly, potent N-specific CD8(+) T cell reactivities, including VT9- and IL9-specific ones, were mounted by mice after a booster vaccination with the live attenuated RVF MP-12. Our data suggest that the RVFV N protein is a potent human T cell immunogen capable of eliciting broad, immunodominant CD8(+) T cell responses that are potentially protective. Understanding the immune responses to the nucleocapsid is central to the design of an effective RVFV vaccine irrespective of whether this viral protein is effective as a stand-alone immunogen or only in combination with other RVFV antigens.


Asunto(s)
Antígenos Virales/inmunología , Linfocitos T CD8-positivos/inmunología , Memoria Inmunológica/inmunología , Proteínas de la Nucleocápside/inmunología , Virus de la Fiebre del Valle del Rift/genética , Vacunas Virales/inmunología , Secuencia de Aminoácidos , Animales , Células Dendríticas/inmunología , Ensayo de Immunospot Ligado a Enzimas , Epítopos de Linfocito T/genética , Citometría de Flujo , Vectores Genéticos , Antígeno HLA-A2/inmunología , Humanos , Lentivirus , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Datos de Secuencia Molecular
19.
PLoS One ; 7(4): e35421, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22536382

RESUMEN

BACKGROUND: Severe acute respiratory syndrome (SARS) emerged in China in 2002 and spread to other countries before brought under control. Because of a concern for reemergence or a deliberate release of the SARS coronavirus, vaccine development was initiated. Evaluations of an inactivated whole virus vaccine in ferrets and nonhuman primates and a virus-like-particle vaccine in mice induced protection against infection but challenged animals exhibited an immunopathologic-type lung disease. DESIGN: Four candidate vaccines for humans with or without alum adjuvant were evaluated in a mouse model of SARS, a VLP vaccine, the vaccine given to ferrets and NHP, another whole virus vaccine and an rDNA-produced S protein. Balb/c or C57BL/6 mice were vaccinated i.m. on day 0 and 28 and sacrificed for serum antibody measurements or challenged with live virus on day 56. On day 58, challenged mice were sacrificed and lungs obtained for virus and histopathology. RESULTS: All vaccines induced serum neutralizing antibody with increasing dosages and/or alum significantly increasing responses. Significant reductions of SARS-CoV two days after challenge was seen for all vaccines and prior live SARS-CoV. All mice exhibited histopathologic changes in lungs two days after challenge including all animals vaccinated (Balb/C and C57BL/6) or given live virus, influenza vaccine, or PBS suggesting infection occurred in all. Histopathology seen in animals given one of the SARS-CoV vaccines was uniformly a Th2-type immunopathology with prominent eosinophil infiltration, confirmed with special eosinophil stains. The pathologic changes seen in all control groups lacked the eosinophil prominence. CONCLUSIONS: These SARS-CoV vaccines all induced antibody and protection against infection with SARS-CoV. However, challenge of mice given any of the vaccines led to occurrence of Th2-type immunopathology suggesting hypersensitivity to SARS-CoV components was induced. Caution in proceeding to application of a SARS-CoV vaccine in humans is indicated.


Asunto(s)
Pulmón/patología , Síndrome Respiratorio Agudo Grave/prevención & control , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/inmunología , Vacunación/efectos adversos , Vacunas Virales/inmunología , Animales , Chlorocebus aethiops , Eosinófilos/inmunología , Femenino , Pulmón/virología , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Síndrome Respiratorio Agudo Grave/virología , Células Th2/inmunología , Técnicas de Cultivo de Tejidos , Vacunas de Productos Inactivados/efectos adversos , Vacunas de Productos Inactivados/inmunología , Células Vero , Proteínas del Envoltorio Viral/inmunología , Vacunas Virales/efectos adversos
20.
J Infect Dis ; 204 Suppl 3: S785-90, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21987751

RESUMEN

A needlestick injury occurred during an animal experiment in the biosafety level 4 laboratory in Hamburg, Germany, in March 2009. The syringe contained Zaire ebolavirus (ZEBOV) mixed with Freund's adjuvant. Neither an approved treatment nor a postexposure prophylaxis (PEP) exists for Ebola hemorrhagic fever. Following a risk-benefit assessment, it was recommended the exposed person take an experimental vaccine that had shown PEP efficacy in ZEBOV-infected nonhuman primates (NHPs) [12]. The vaccine, which had not been used previously in humans, was a live-attenuated recombinant vesicular stomatitis virus (recVSV) expressing the glycoprotein of ZEBOV. A single dose of 5 × 10(7) plaque-forming units was injected 48 hours after the accident. The vaccinee developed fever 12 hours later and recVSV viremia was detectable by polymerase chain reaction (PCR) for 2 days. Otherwise, the person remained healthy, and ZEBOV RNA, except for the glycoprotein gene expressed in the vaccine, was never detected in serum and peripheral blood mononuclear cells during the 3-week observation period.


Asunto(s)
Vacunas contra el Virus del Ébola , Ebolavirus , Fiebre Hemorrágica Ebola/prevención & control , Infección de Laboratorio/prevención & control , Lesiones por Pinchazo de Aguja , Profilaxis Posexposición/métodos , Animales , Contención de Riesgos Biológicos , Vacunas contra el Virus del Ébola/administración & dosificación , Vacunas contra el Virus del Ébola/normas , Alemania , Humanos , Ratones , Lesiones por Pinchazo de Aguja/virología , Exposición Profesional , ARN Viral/sangre , Investigadores , Vacunas Atenuadas , Vacunas de ADN/inmunología , Vesiculovirus/genética , Viremia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...