Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 459
Filtrar
1.
IDCases ; 36: e01984, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38765799

RESUMEN

In this case report, we present a patient with a history of splenectomy and two recent hospital admissions for severe gastroenteritis with sepsis. The first hospital admission was for Yersinia enterocolitica and the second admission was for Campylobacter fetus gastroenteritis with bacteremia. During both admissions, the patient was treated with a prolonged course of antibiotics and later discharged with full recovery. In our review, we address the risk of enterocolitis in splenectomized patients.

2.
J Microbiol Biol Educ ; 25(1): e0000524, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38661412

RESUMEN

The impacts of climate change are and will continue to be far-reaching, and environmental justice communities are disproportionately impacted due to environmental racism and related forms of oppression. Vision and Change in Undergraduate Biology Education encourages that the connection between science and society be explicitly taught in science classrooms. Here, I describe a fictional case study where students decide how to allocate a budget at a non-profit organization tasked with mitigating environmental issues in a town that contains environmental justice communities. Students are each assigned a role in the community and must reach a consensus on their budget in small groups before the whole class votes on a consensus budget. Afterward, students perform a metacognitive activity that encourages them to reflect on the human health impacts of their decisions and how their role impacted their decision-making process. Quantitative and qualitative feedback from students shows that by the end of the course, students appreciate the importance of science literacy in understanding global issues and that they are able to connect environmental justice to their lives and coursework. This case study helps fill an unmet need in climate change education by allowing students to practice empathy in topics related to climate change and environmental justice.

3.
J Biol Chem ; 300(6): 107292, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38636659

RESUMEN

[FeFe]-hydrogenases catalyze the reversible oxidation of H2 from electrons and protons at an organometallic active site cofactor named the H-cluster. In addition to the H-cluster, most [FeFe]-hydrogenases possess accessory FeS cluster (F-cluster) relays that function in mediating electron transfer with catalysis. There is significant variation in the structural properties of F-cluster relays among the [FeFe]-hydrogenases; however, it is unknown how this variation relates to the electronic and thermodynamic properties, and thus the electron transfer properties, of enzymes. Clostridium pasteurianum [FeFe]-hydrogenase II (CpII) exhibits a large catalytic bias for H2 oxidation (compared to H2 production), making it a notable system for examining if F-cluster properties contribute to the overall function and efficiency of the enzyme. By applying a combination of multifrequency and potentiometric electron paramagnetic resonance, we resolved two electron paramagnetic resonance signals with distinct power- and temperature-dependent properties at g = 2.058 1.931 1.891 (F2.058) and g = 2.061 1.920 1.887 (F2.061), with assigned midpoint potentials of -140 ± 18 mV and -406 ± 12 mV versus normal hydrogen electrode, respectively. Spectral analysis revealed features consistent with spin-spin coupling between the two [4Fe-4S] F-clusters, and possible functional models are discussed that account for the contribution of coupling to the electron transfer landscape. The results signify the interplay of electronic coupling and free energy properties and parameters of the FeS clusters to the electron transfer mechanism through the relay and provide new insight as to how relays functionally complement the catalytic directionality of active sites to achieve highly efficient catalysis.

4.
J Inorg Biochem ; 253: 112484, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38219407

RESUMEN

The light-driven reduction of dinitrogen (N2) to ammonia (NH3) catalyzed by a cadmium sulfide (CdS) nanocrystal­nitrogenase MoFe protein biohybrid is dependent on a range of different factors, including an appropriate hole-scavenging sacrificial electron donor (SED). Here, the impact of different SEDs on the overall rate of N2 reduction catalyzed by a CdS quantum dot (QD)-MoFe protein system was determined. The selection of SED was guided by several goals: (i) molecules with standard reduction potentials sufficient to reduce the oxidized CdS QD, (ii) molecules that do not absorb the excitation wavelength of the CdS QD, and (iii) molecules that could be readily reduced by sustainable processes. Earlier studies utilized buffer molecules or ascorbic acid as the SED. The effectiveness of ascorbic acid as SED was compared to dithionite (DT), triethanolamine (TEOA), and hydroquinone (HQ) across a range of concentrations in supporting N2 reduction to NH3 in a CdS QD-MoFe protein photocatalytic system. It was found that TEOA supported N2 reduction rates comparable to those observed for dithionite and ascorbic acid. HQ was found to support significantly higher rates of N2 reduction compared to the other SEDs at a concentration of 50 mM. A comparison of the rates of N2 reduction by the biohybrid complex to the standard reduction potential (Eo) of the SEDs reveals that Eo is not the only factor impacting the efficiency of hole-scavenging. These findings reveal the importance of the SED properties for improving the efficiency of hole-scavenging in the light-driven N2 reduction reaction catalyzed by a CdS QD-MoFe protein hybrid.


Asunto(s)
Azotobacter vinelandii , Compuestos de Cadmio , Nitrogenasa , Sulfuros , Nitrogenasa/metabolismo , Molibdoferredoxina/metabolismo , Oxidación-Reducción , Ditionita/metabolismo , Catálisis , Ácido Ascórbico/metabolismo , Azotobacter vinelandii/metabolismo
5.
mBio ; 15(2): e0298723, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38126751

RESUMEN

Acetone carboxylases (ACs) catalyze the metal- and ATP-dependent conversion of acetone and bicarbonate to form acetoacetate. Interestingly, two homologous ACs that have been biochemically characterized have been reported to have different metal complements, implicating different metal dependencies in catalysis. ACs from proteobacteria Xanthobacter autotrophicus and Aromatoleum aromaticum share 68% sequence identity but have been proposed to have different catalytic metals. In this work, the two ACs were expressed under the same conditions in Escherichia coli and were subjected to parallel chelation and reconstitution experiments with Mn(II) or Fe(II). Electron paramagnetic and Mössbauer spectroscopies identified signatures, respectively, of Mn(II) or Fe(II) bound at the active site. These experiments showed that the respective ACs, without the assistance of chaperones, second metal sites, or post-translational modifications facilitate correct metal incorporation, and despite the expected thermodynamic preference for Fe(II), each preferred a distinct metal. Catalysis was likewise associated uniquely with the cognate metal, though either could potentially serve the proposed Lewis acidic role. Subtle differences in the protein structure are implicated in serving as a selectivity filter for Mn(II) or Fe(II).IMPORTANCEThe Irving-Williams series refers to the predicted stabilities of transition metal complexes where the observed general stability for divalent first-row transition metal complexes increase across the row. Acetone carboxylases (ACs) use a coordinated divalent metal at their active site in the catalytic conversion of bicarbonate and acetone to form acetoacetate. Highly homologous ACs discriminate among different divalent metals at their active sites such that variations of the enzyme prefer Mn(II) over Fe(II), defying Irving-Williams-predicted behavior. Defining the determinants that promote metal discrimination within the first-row transition metals is of broad fundamental importance in understanding metal-mediated catalysis and metal catalyst design.


Asunto(s)
Acetona , Complejos de Coordinación , Acetona/metabolismo , Acetoacetatos , Manganeso/metabolismo , Bicarbonatos , Metales/metabolismo , Compuestos Ferrosos/metabolismo , Catálisis
6.
Br J Pharmacol ; 180 Suppl 2: S145-S222, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-38123150

RESUMEN

The Concise Guide to PHARMACOLOGY 2023/24 is the sixth in this series of biennial publications. The Concise Guide provides concise overviews, mostly in tabular format, of the key properties of approximately 1800 drug targets, and over 6000 interactions with about 3900 ligands. There is an emphasis on selective pharmacology (where available), plus links to the open access knowledgebase source of drug targets and their ligands (https://www.guidetopharmacology.org/), which provides more detailed views of target and ligand properties. Although the Concise Guide constitutes almost 500 pages, the material presented is substantially reduced compared to information and links presented on the website. It provides a permanent, citable, point-in-time record that will survive database updates. The full contents of this section can be found at http://onlinelibrary.wiley.com/doi/10.1111/bph.16178. Ion channels are one of the six major pharmacological targets into which the Guide is divided, with the others being: G protein-coupled receptors, nuclear hormone receptors, catalytic receptors, enzymes and transporters. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. The landscape format of the Concise Guide is designed to facilitate comparison of related targets from material contemporary to mid-2023, and supersedes data presented in the 2021/22, 2019/20, 2017/18, 2015/16 and 2013/14 Concise Guides and previous Guides to Receptors and Channels. It is produced in close conjunction with the Nomenclature and Standards Committee of the International Union of Basic and Clinical Pharmacology (NC-IUPHAR), therefore, providing official IUPHAR classification and nomenclature for human drug targets, where appropriate.


Asunto(s)
Bases de Datos Farmacéuticas , Farmacología , Humanos , Canales Iónicos/química , Ligandos , Receptores Acoplados a Proteínas G , Bases de Datos Factuales
7.
Br J Pharmacol ; 180 Suppl 2: S223-S240, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-38123152

RESUMEN

The Concise Guide to PHARMACOLOGY 2023/24 is the sixth in this series of biennial publications. The Concise Guide provides concise overviews, mostly in tabular format, of the key properties of approximately 1800 drug targets, and nearly 6000 interactions with about 3900 ligands. There is an emphasis on selective pharmacology (where available), plus links to the open access knowledgebase source of drug targets and their ligands (https://www.guidetopharmacology.org/), which provides more detailed views of target and ligand properties. Although the Concise Guide constitutes almost 500 pages, the material presented is substantially reduced compared to information and links presented on the website. It provides a permanent, citable, point-in-time record that will survive database updates. The full contents of this section can be found at http://onlinelibrary.wiley.com/doi/10.1111/bph.16179. Nuclear hormone receptors are one of the six major pharmacological targets into which the Guide is divided, with the others being: G protein-coupled receptors, catalytic receptors, enzymes and transporters. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. The landscape format of the Concise Guide is designed to facilitate comparison of related targets from material contemporary to mid-2023, and supersedes data presented in the 2021/22, 2019/20, 2017/18, 2015/16 and 2013/14 Concise Guides and previous Guides to Receptors and Channels. It is produced in close conjunction with the Nomenclature and Standards Committee of the International Union of Basic and Clinical Pharmacology (NC-IUPHAR), therefore, providing official IUPHAR classification and nomenclature for human drug targets, where appropriate.


Asunto(s)
Bases de Datos Farmacéuticas , Farmacología , Humanos , Ligandos , Proteínas de Transporte de Membrana , Receptores Acoplados a Proteínas G , Receptores Citoplasmáticos y Nucleares
8.
Br J Pharmacol ; 180 Suppl 2: S289-S373, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-38123154

RESUMEN

The Concise Guide to PHARMACOLOGY 2023/24 is the sixth in this series of biennial publications. The Concise Guide provides concise overviews, mostly in tabular format, of the key properties of approximately 1800 drug targets, and about 6000 interactions with about 3900 ligands. There is an emphasis on selective pharmacology (where available), plus links to the open access knowledgebase source of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. Although the Concise Guide constitutes almost 500 pages, the material presented is substantially reduced compared to information and links presented on the website. It provides a permanent, citable, point-in-time record that will survive database updates. The full contents of this section can be found at http://onlinelibrary.wiley.com/doi/10.1111/bph.16176. In addition to this overview, in which are identified 'Other protein targets' which fall outside of the subsequent categorisation, there are six areas of focus: G protein-coupled receptors, ion channels, nuclear hormone receptors, catalytic receptors, enzymes and transporters. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. The landscape format of the Concise Guide is designed to facilitate comparison of related targets from material contemporary to mid-2023, and supersedes data presented in the 2021/22, 2019/20, 2017/18, 2015/16 and 2013/14 Concise Guides and previous Guides to Receptors and Channels. It is produced in close conjunction with the Nomenclature and Standards Committee of the International Union of Basic and Clinical Pharmacology (NC-IUPHAR), therefore, providing official IUPHAR classification and nomenclature for human drug targets, where appropriate.


Asunto(s)
Bases de Datos Farmacéuticas , Canales Iónicos , Humanos , Ligandos , Receptores Citoplasmáticos y Nucleares , Receptores Acoplados a Proteínas G
9.
Br J Pharmacol ; 180 Suppl 2: S1-S22, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-38123153

RESUMEN

The Concise Guide to PHARMACOLOGY 2023/24 is the sixth in this series of biennial publications. The Concise Guide provides concise overviews, mostly in tabular format, of the key properties of approximately 1800 drug targets, and about 6000 interactions with about 3900 ligands. There is an emphasis on selective pharmacology (where available), plus links to the open access knowledgebase source of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. Although the Concise Guide constitutes almost 500 pages, the material presented is substantially reduced compared to information and links presented on the website. It provides a permanent, citable, point-in-time record that will survive database updates. The full contents of this section can be found at http://onlinelibrary.wiley.com/doi/10.1111/bph.16176. In addition to this overview, in which are identified 'Other protein targets' which fall outside of the subsequent categorisation, there are six areas of focus: G protein-coupled receptors, ion channels, nuclear hormone receptors, catalytic receptors, enzymes and transporters. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. The landscape format of the Concise Guide is designed to facilitate comparison of related targets from material contemporary to mid-2023, and supersedes data presented in the 2021/22, 2019/20, 2017/18, 2015/16 and 2013/14 Concise Guides and previous Guides to Receptors and Channels. It is produced in close conjunction with the Nomenclature and Standards Committee of the International Union of Basic and Clinical Pharmacology (NC-IUPHAR), therefore, providing official IUPHAR classification and nomenclature for human drug targets, where appropriate.


Asunto(s)
Bases de Datos Farmacéuticas , Farmacología , Humanos , Bases de Datos Factuales , Canales Iónicos , Ligandos , Receptores Citoplasmáticos y Nucleares
10.
Br J Pharmacol ; 180 Suppl 2: S23-S144, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-38123151

RESUMEN

The Concise Guide to PHARMACOLOGY 2023/24 is the sixth in this series of biennial publications. The Concise Guide provides concise overviews, mostly in tabular format, of the key properties of approximately 1800 drug targets, and about 6000 interactions with about 3900 ligands. There is an emphasis on selective pharmacology (where available), plus links to the open access knowledgebase source of drug targets and their ligands (https://www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. Although the Concise Guide constitutes almost 500 pages, the material presented is substantially reduced compared to information and links presented on the website. It provides a permanent, citable, point-in-time record that will survive database updates. The full contents of this section can be found at http://onlinelibrary.wiley.com/doi/bph.16177. G protein-coupled receptors are one of the six major pharmacological targets into which the Guide is divided, with the others being: ion channels, nuclear hormone receptors, catalytic receptors, enzymes and transporters. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. The landscape format of the Concise Guide is designed to facilitate comparison of related targets from material contemporary to mid-2023, and supersedes data presented in the 2021/22, 2019/20, 2017/18, 2015/16 and 2013/14 Concise Guides and previous Guides to Receptors and Channels. It is produced in close conjunction with the Nomenclature and Standards Committee of the International Union of Basic and Clinical Pharmacology (NC-IUPHAR), therefore, providing official IUPHAR classification and nomenclature for human drug targets, where appropriate.


Asunto(s)
Bases de Datos Farmacéuticas , Receptores Acoplados a Proteínas G , Humanos , Ligandos , Canales Iónicos/química , Receptores Citoplasmáticos y Nucleares
11.
Br J Pharmacol ; 180 Suppl 2: S374-S469, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-38123156

RESUMEN

The Concise Guide to PHARMACOLOGY 2023/24 is the sixth in this series of biennial publications. The Concise Guide provides concise overviews, mostly in tabular format, of the key properties of approximately 1800 drug targets, and over 6000 interactions with about 3900 ligands. There is an emphasis on selective pharmacology (where available), plus links to the open access knowledgebase source of drug targets and their ligands (https://www.guidetopharmacology.org/), which provides more detailed views of target and ligand properties. Although the Concise Guide constitutes almost 500 pages, the material presented is substantially reduced compared to information and links presented on the website. It provides a permanent, citable, point-in-time record that will survive database updates. The full contents of this section can be found at http://onlinelibrary.wiley.com/doi/10.1111/bph.16182. Transporters are one of the six major pharmacological targets into which the Guide is divided, with the others being: G protein-coupled receptors, ion channels, nuclear hormone receptors, catalytic receptors and enzymes. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. The landscape format of the Concise Guide is designed to facilitate comparison of related targets from material contemporary to mid-2023, and supersedes data presented in the 2021/22, 2019/20, 2017/18, 2015/16 and 2013/14 Concise Guides and previous Guides to Receptors and Channels. It is produced in close conjunction with the Nomenclature and Standards Committee of the International Union of Basic and Clinical Pharmacology (NC-IUPHAR), therefore, providing official IUPHAR classification and nomenclature for human drug targets, where appropriate.


Asunto(s)
Bases de Datos Farmacéuticas , Farmacología , Humanos , Ligandos , Canales Iónicos/química , Receptores Acoplados a Proteínas G , Receptores Citoplasmáticos y Nucleares
12.
Br J Pharmacol ; 180 Suppl 2: S241-S288, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-38123155

RESUMEN

The Concise Guide to PHARMACOLOGY 2023/24 is the sixth in this series of biennial publications. The Concise Guide provides concise overviews, mostly in tabular format, of the key properties of approximately 1800 drug targets, and nearly 6000 interactions with about 3900 ligands. There is an emphasis on selective pharmacology (where available), plus links to the open access knowledgebase source of drug targets and their ligands (https://www.guidetopharmacology.org/), which provides more detailed views of target and ligand properties. Although the Concise Guide constitutes almost 500 pages, the material presented is substantially reduced compared to information and links presented on the website. It provides a permanent, citable, point-in-time record that will survive database updates. The full contents of this section can be found at http://onlinelibrary.wiley.com/doi/10.1111/bph.16180. Catalytic receptors are one of the six major pharmacological targets into which the Guide is divided, with the others being: G protein-coupled receptors, ion channels, nuclear hormone receptors, enzymes and transporters. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. The landscape format of the Concise Guide is designed to facilitate comparison of related targets from material contemporary to mid-2023, and supersedes data presented in the 2021/22, 2019/20, 2017/18, 2015/16 and 2013/14 Concise Guides and previous Guides to Receptors and Channels. It is produced in close conjunction with the Nomenclature and Standards Committee of the International Union of Basic and Clinical Pharmacology (NC-IUPHAR), therefore, providing official IUPHAR classification and nomenclature for human drug targets, where appropriate.


Asunto(s)
Bases de Datos Farmacéuticas , Farmacología , Humanos , Ligandos , Receptores Acoplados a Proteínas G , Canales Iónicos/química , Receptores Citoplasmáticos y Nucleares
13.
J Chem Phys ; 159(23)2023 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-38117020

RESUMEN

The biological reduction of N2 to ammonia requires the ATP-dependent, sequential delivery of electrons from the Fe protein to the MoFe protein of nitrogenase. It has been demonstrated that CdS nanocrystals can replace the Fe protein to deliver photoexcited electrons to the MoFe protein. Herein, light-activated electron delivery within the CdS:MoFe protein complex was achieved in the frozen state, revealing that all the electron paramagnetic resonance (EPR) active E-state intermediates in the catalytic cycle can be trapped and characterized by EPR spectroscopy. Prior to illumination, the CdS:MoFe protein complex EPR spectrum was composed of a S = 3/2 rhombic signal (g = 4.33, 3.63, and 2.01) consistent with the FeMo-cofactor in the resting state, E0. Illumination for sequential 1-h periods at 233 K under 1 atm of N2 led to a cumulative attenuation of E0 by 75%. This coincided with the appearance of S = 3/2 and S = 1/2 signals assigned to two-electron (E2) and four-electron (E4) reduced states of the FeMo-cofactor, together with additional S = 1/2 signals consistent with the formation of E6 and E8 states. Simulations of EPR spectra allowed quantification of the different E-state populations, along with mapping of these populations onto the Lowe-Thorneley kinetic scheme. The outcome of this work demonstrates that the photochemical delivery of electrons to the MoFe protein can be used to populate all of the EPR active E-state intermediates of the nitrogenase MoFe protein cycle.


Asunto(s)
Azotobacter vinelandii , Puntos Cuánticos , Molibdoferredoxina/química , Molibdoferredoxina/metabolismo , Temperatura , Oxidación-Reducción , Nitrogenasa/química , Nitrogenasa/metabolismo , Espectroscopía de Resonancia por Spin del Electrón/métodos , Azotobacter vinelandii/metabolismo
15.
Commun Chem ; 6(1): 254, 2023 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-37980448

RESUMEN

The reduction of dinitrogen to ammonia catalyzed by nitrogenase involves a complex series of events, including ATP hydrolysis, electron transfer, and activation of metal clusters for N2 reduction. Early evidence shows that an essential part of the mechanism involves transducing information between the nitrogenase component proteins through conformational dynamics. Here, millisecond time-resolved hydrogen-deuterium exchange mass spectrometry was used to unravel peptide-level protein motion on the time scale of catalysis of Mo-dependent nitrogenase from Azotobacter vinelandii. Normal mode analysis calculations complemented this data, providing insights into the specific signal transduction pathways that relay information across protein interfaces at distances spanning 100 Å. Together, these results show that conformational changes induced by protein docking are rapidly transduced to the active site, suggesting a specific mechanism for activating the metal cofactor in the enzyme active site.

16.
Nano Lett ; 23(22): 10466-10472, 2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-37930772

RESUMEN

Nitrogenase MoFe protein can be coupled with CdS nanocrystals (NCs) to enable photocatalytic N2 reduction. The nature of interactions that support complex formation is of paramount importance in intermolecular electron transfer that supports catalysis. In this work we have employed microscale thermophoresis to examine binding interactions between 3-mercaptopropionate capped CdS quantum dots (QDs) and MoFe protein over a range of QD diameters (3.4-4.3 nm). The results indicate that the interactions are largely electrostatic, with the strength of interactions similar to that observed for the physiological electron donor. In addition, the strength of interactions is sensitive to the QD diameter, and the binding interactions are significantly stronger for QDs with smaller diameters. The ability to quantitatively assess NC protein interactions in biohybrid systems supports strategies for understanding properties and reaction parameters that are important for obtaining optimal rates of catalysis in biohybrid systems.


Asunto(s)
Molibdoferredoxina , Puntos Cuánticos , Molibdoferredoxina/química , Molibdoferredoxina/metabolismo , Electricidad Estática , Nitrogenasa/química , Nitrogenasa/metabolismo , Transporte de Electrón
17.
J Am Chem Soc ; 145(39): 21165-21169, 2023 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-37729189

RESUMEN

A critical step in the mechanism of N2 reduction to 2NH3 catalyzed by the enzyme nitrogenase is the reaction of the four-electron/four-proton reduced intermediate state of the active-site FeMo-cofactor (E4(4H)). This state is a junction in the catalytic mechanism, either relaxing by the reaction of a metal bound Fe-hydride with a proton forming H2 or going forward with N2 binding coupled to the reductive elimination (re) of two Fe-hydrides as H2 to form the E4(2N2H) state. E4(2N2H) can relax to E4(4H) by the oxidative addition (oa) of H2 and release of N2 or can be further reduced in a series of catalytic steps to release 2NH3. If the H2 re/oa mechanism is correct, it requires that oa of H2 be associative with E4(2N2H). In this report, we have taken advantage of CdS quantum dots in complex with MoFe protein to achieve photodriven electron delivery in the frozen state, with cryo-annealing in the dark, to reveal details of the E-state species and to test the stability of E4(2N2H). Illumination of frozen CdS:MoFe protein complexes led to formation of a population of reduced intermediates. Electron paramagnetic resonance spectroscopy identified E-state signals including E2 and E4(2N2H), as well as signals suggesting the formation of E6 or E8. It is shown that in the frozen state when pN2 is much greater than pH2, the E4(2N2H) state is kinetically stable, with very limited forward or reverse reaction rates. These results establish that the oa of H2 to the E4(2N2H) state follows an associative reaction mechanism.

18.
Front Cell Infect Microbiol ; 13: 1182567, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37600946

RESUMEN

Introduction: Various sequencing based approaches are used to identify and characterize the activities of cis-regulatory elements in a genome-wide fashion. Some of these techniques rely on indirect markers such as histone modifications (ChIP-seq with histone antibodies) or chromatin accessibility (ATAC-seq, DNase-seq, FAIRE-seq), while other techniques use direct measures such as episomal assays measuring the enhancer properties of DNA sequences (STARR-seq) and direct measurement of the binding of transcription factors (ChIP-seq with transcription factor-specific antibodies). The activities of cis-regulatory elements such as enhancers, promoters, and repressors are determined by their sequence and secondary processes such as chromatin accessibility, DNA methylation, and bound histone markers. Methods: Here, machine learning models are employed to evaluate the accuracy with which cis-regulatory elements identified by various commonly used sequencing techniques can be predicted by their underlying sequence alone to distinguish between cis-regulatory activity that is reflective of sequence content versus secondary processes. Results and discussion: Models trained and evaluated on D. melanogaster sequences identified through DNase-seq and STARR-seq are significantly more accurate than models trained on sequences identified by H3K4me1, H3K4me3, and H3K27ac ChIP-seq, FAIRE-seq, and ATAC-seq. These results suggest that the activity detected by DNase-seq and STARR-seq can be largely explained by underlying DNA sequence, independent of secondary processes. Experimentally, a subset of DNase-seq and H3K4me1 ChIP-seq sequences were tested for enhancer activity using luciferase assays and compared with previous tests performed on STARR-seq sequences. The experimental data indicated that STARR-seq sequences are substantially enriched for enhancer-specific activity, while the DNase-seq and H3K4me1 ChIP-seq sequences are not. Taken together, these results indicate that the DNase-seq approach identifies a broad class of regulatory elements of which enhancers are a subset and the associated data are appropriate for training models for detecting regulatory activity from sequence alone, STARR-seq data are best for training enhancer-specific sequence models, and H3K4me1 ChIP-seq data are not well suited for training and evaluating sequence-based models for cis-regulatory element prediction.


Asunto(s)
Drosophila melanogaster , Histonas , Animales , Histonas/genética , Análisis de Secuencia de ADN , Cromatina/genética , Desoxirribonucleasas
19.
Proc Natl Acad Sci U S A ; 120(30): e2302732120, 2023 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-37459513

RESUMEN

NifL is a conformationally dynamic flavoprotein responsible for regulating the activity of the σ54-dependent activator NifA to control the transcription of nitrogen fixation (nif) genes in response to intracellular oxygen, cellular energy, or nitrogen availability. The NifL-NifA two-component system is the master regulatory system for nitrogen fixation. NifL serves as a sensory protein, undergoing signal-dependent conformational changes that modulate its interaction with NifA, forming the NifL-NifA complex, which inhibits NifA activity in conditions unsuitable for nitrogen fixation. While NifL-NifA regulation is well understood, these conformationally flexible proteins have eluded previous attempts at structure determination. In work described here, we advance a structural model of the NifL dimer supported by a combination of scattering techniques and mass spectrometry (MS)-coupled structural analyses that report on the average structure in solution. Using a combination of small angle X-ray scattering-derived electron density maps and MS-coupled surface labeling, we investigate the conformational dynamics responsible for NifL oxygen and energy responses. Our results reveal conformational differences in the structure of NifL under reduced and oxidized conditions that provide the basis for a model for modulating NifLA complex formation in the regulation of nitrogen fixation in response to oxygen in the model diazotroph, Azotobacter vinelandii.


Asunto(s)
Azotobacter vinelandii , Factores de Transcripción , Factores de Transcripción/metabolismo , Proteínas Bacterianas/metabolismo , Fijación del Nitrógeno/fisiología , Transducción de Señal , Oxidación-Reducción , Oxígeno/metabolismo , Regulación Bacteriana de la Expresión Génica , Nitrógeno/metabolismo , Genes Bacterianos , Azotobacter vinelandii/genética , Azotobacter vinelandii/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...