Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Physiol Plant ; 167(1): 111-126, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30421426

RESUMEN

As a consequence of global climate change, cold acclimation and deacclimation cycles are becoming increasingly frequent during winter in temperate regions. However, little is known about plant deacclimation and in particular reacclimation mechanisms, although deacclimation resistance and the ability to reacclimate may have wide-ranging consequences regarding plant productivity in a changing climate. Here, we report time-dependent responses of freezing tolerance, respiration rates, metabolite contents (high-resolution magic angle spinning NMR) and fatty acid levels (gas chromatography) in flower buds of two ecodormant Ribes nigrum cultivars exposed to three different deacclimation temperatures followed by a reacclimation treatment at 4°C. The data reveal that despite differences in the progression of deacclimation, the capacity of blackcurrant flower buds to reharden in late winter is virtually non-existing, implying that increasingly irregular temperature patterns is critical for blackcurrant fruit yield. The early phase of deacclimation is associated with a transient increase in respiration and decreasing contents of amino acids, tricarboxylic acid (TCA) cycle intermediates and sugars, indicating an increased need for carbon sources and respiratory energy production for the activation of growth. Decreasing sugar levels may additionally cause loss of freezing tolerance. Deacclimation also involves desaturation of membrane lipids, which likely also contributes to decreased freezing tolerance but may also reflect biosynthesis of signaling molecules stimulating growth and floral organ differentiation. These data provide new insights into the under-researched deacclimation mechanisms and the ability of blackcurrant to reacclimate following different advancements of deacclimation and contribute to our understanding of plant responses to increasingly irregular temperature patterns.


Asunto(s)
Ribes/metabolismo , Aclimatación/fisiología , Ciclo del Ácido Cítrico/fisiología , Cambio Climático , Temperatura
2.
Front Plant Sci ; 7: 821, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27379120

RESUMEN

Polyploidy is a common phenomenon in the evolution of angiosperms. It has been suggested that polyploids manage harsh environments better than their diploid relatives but empirical data supporting this hypothesis are scarce, especially for trees. Using microsatellite markers and flow cytometry, we examine the frequency of polyploids and diploids in a progeny trial testing four different populations of Acacia senegal, a species native to sub-Saharan regions of Africa. We compare growth between cytotypes and test whether polyploid seedlings grow better than diploids. Our results show that polyploids coexist with diploids in highly variable proportions among populations in Senegal. Acacia senegal genotypes were predominantly diploid and tetraploid, but triploid, pentaploid, hexaploid, and octaploid forms were also found. We find that polyploids show faster growth than diploids under our test conditions: in an 18 years old field trial, polyploid superiority was estimated to be 17% in trunk diameter and 9% in height while in a growth chamber experiment, polyploids grew 28% taller, but only after being exposed to drought stress. The results suggest that polyploid A. senegal can have an adaptive advantage in some regions of Africa.

3.
Physiol Plant ; 134(3): 473-85, 2008 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-18636985

RESUMEN

Cold injury is frequently seen in the commercially important shrub Hydrangea macrophylla but not in Hydrangea paniculata. Cold acclimation and deacclimation and associated physiological adaptations were investigated from late September 2006 to early May 2007 in stems of field-grown H. macrophylla ssp. macrophylla (Thunb.) Ser. cv. Blaumeise and H. paniculata Sieb. cv. Kyushu. Acclimation and deacclimation appeared approximately synchronized in the two species, but they differed significantly in levels of mid-winter cold hardiness, rates of acclimation and deacclimation and physiological traits conferring tolerance to freezing conditions. Accumulation patterns of sucrose and raffinose in stems paralleled fluctuations in cold hardiness in both species, but H. macrophylla additionally accumulated glucose and fructose during winter, indicating species-specific differences in carbohydrate metabolism. Protein profiles differed between H. macrophylla and H. paniculata, but distinct seasonal patterns associated with winter acclimation were observed in both species. In H. paniculata concurrent increases in xylem sap abscisic acid (ABA) concentrations ([ABA](xylem)) and freezing tolerance suggests an involvement of ABA in cold acclimation. In contrast, ABA from the root system was seemingly not involved in cold acclimation in H. macrophylla, suggesting that species-specific differences in cold hardiness may be related to differences in [ABA](xylem). In both species a significant increase in stem freezing tolerance appeared long after growth ceased, suggesting that cold acclimation is more regulated by temperature than by photoperiod.


Asunto(s)
Ácido Abscísico/metabolismo , Aclimatación , Metabolismo de los Hidratos de Carbono , Frío , Hydrangea/fisiología , Corteza de la Planta/metabolismo , Proteínas de Plantas/metabolismo , Aire , Electroforesis en Gel de Poliacrilamida , Congelación , Hydrangea/crecimiento & desarrollo , Fotoperiodo , Tallos de la Planta/metabolismo , Estaciones del Año , Suelo , Agua/fisiología , Xilema/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA