Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 14(1): 6732, 2023 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-37872146

RESUMEN

Myosin VI (Myo6) is the only minus-end directed nanomotor on actin, allowing it to uniquely contribute to numerous cellular functions. As for other nanomotors, the proper functioning of Myo6 relies on precise spatiotemporal control of motor activity via a poorly defined off-state and interactions with partners. Our structural, functional, and cellular studies reveal key features of myosin regulation and indicate that not all partners can activate Myo6. TOM1 and Dab2 cannot bind the off-state, while GIPC1 binds Myo6, releases its auto-inhibition and triggers proximal dimerization. Myo6 partners thus differentially recruit Myo6. We solved a crystal structure of the proximal dimerization domain, and show that its disruption compromises endocytosis in HeLa cells, emphasizing the importance of Myo6 dimerization. Finally, we show that the L926Q deafness mutation disrupts Myo6 auto-inhibition and indirectly impairs proximal dimerization. Our study thus demonstrates the importance of partners in the control of Myo6 auto-inhibition, localization, and activation.


Asunto(s)
Actinas , Cadenas Pesadas de Miosina , Humanos , Células HeLa , Dimerización , Actinas/metabolismo , Cadenas Pesadas de Miosina/metabolismo
2.
Biol Psychiatry ; 88(1): 18-27, 2020 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-32199605

RESUMEN

Co-occurrence of psychiatric disorders is well documented. Recent quantitative efforts have moved toward an understanding of this phenomenon, with the general psychopathology or p-factor model emerging as the most prominent characterization. Over the past decade, bifactor model analysis has become increasingly popular as a statistical approach to describe common/shared and unique elements in psychopathology. However, recent work has highlighted potential problems with common approaches to evaluating and interpreting bifactor models. Here, we argue that bifactor models, when properly applied and interpreted, can be useful for answering some important questions in psychology and psychiatry research. We review problems with evaluating bifactor models based on global model fit statistics. We then describe more valid approaches to evaluating bifactor models and highlight 3 types of research questions for which bifactor models are well suited to answer. We also discuss the utility and limits of bifactor applications in genetic and neurobiological research. We close by comparing advantages and disadvantages of bifactor models with other analytic approaches and note that no statistical model is a panacea to rectify limitations of the research design used to gather data.


Asunto(s)
Trastornos Mentales , Psiquiatría , Humanos , Modelos Estadísticos , Neurobiología , Psicopatología
3.
J Cell Biol ; 217(8): 2709-2726, 2018 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-29875258

RESUMEN

Vesicular and tubular transport intermediates regulate organellar cargo dynamics. Transport carrier release involves local and profound membrane remodeling before fission. Pinching the neck of a budding tubule or vesicle requires mechanical forces, likely exerted by the action of molecular motors on the cytoskeleton. Here, we show that myosin VI, together with branched actin filaments, constricts the membrane of tubular carriers that are then released from melanosomes, the pigment containing lysosome-related organelles of melanocytes. By combining superresolution fluorescence microscopy, correlative light and electron microscopy, and biochemical analyses, we find that myosin VI motor activity mediates severing by constricting the neck of the tubule at specific melanosomal subdomains. Pinching of the tubules involves the cooperation of the myosin adaptor optineurin and the activity of actin nucleation machineries, including the WASH and Arp2/3 complexes. The fission and release of these tubules allows for the export of components from melanosomes, such as the SNARE VAMP7, and promotes melanosome maturation and transfer to keratinocytes. Our data reveal a new myosin VI- and actin-dependent membrane fission mechanism required for organelle function.


Asunto(s)
Citoesqueleto de Actina/fisiología , Melanosomas/metabolismo , Cadenas Pesadas de Miosina/fisiología , Citoesqueleto de Actina/metabolismo , Proteínas de Ciclo Celular , Línea Celular , Humanos , Melanosomas/ultraestructura , Proteínas de Transporte de Membrana , Microtúbulos , Cadenas Pesadas de Miosina/genética , Cadenas Pesadas de Miosina/metabolismo , Factor de Transcripción TFIIIA/metabolismo , Factor de Transcripción TFIIIA/fisiología
4.
Proc Natl Acad Sci U S A ; 113(50): E8059-E8068, 2016 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-27911821

RESUMEN

The formation of filopodia in Metazoa and Amoebozoa requires the activity of myosin 10 (Myo10) in mammalian cells and of Dictyostelium unconventional myosin 7 (DdMyo7) in the social amoeba Dictyostelium However, the exact roles of these MyTH4-FERM myosins (myosin tail homology 4-band 4.1, ezrin, radixin, moesin; MF) in the initiation and elongation of filopodia are not well defined and may reflect conserved functions among phylogenetically diverse MF myosins. Phylogenetic analysis of MF myosin domains suggests that a single ancestral MF myosin existed with a structure similar to DdMyo7, which has two MF domains, and that subsequent duplications in the metazoan lineage produced its functional homolog Myo10. The essential functional features of the DdMyo7 myosin were identified using quantitative live-cell imaging to characterize the ability of various mutants to rescue filopod formation in myo7-null cells. The two MF domains were found to function redundantly in filopod formation with the C-terminal FERM domain regulating both the number of filopodia and their elongation velocity. DdMyo7 mutants consisting solely of the motor plus a single MyTH4 domain were found to be capable of rescuing the formation of filopodia, establishing the minimal elements necessary for the function of this myosin. Interestingly, a chimeric myosin with the Myo10 MF domain fused to the DdMyo7 motor also was capable of rescuing filopod formation in the myo7-null mutant, supporting fundamental functional conservation between these two distant myosins. Together, these findings reveal that MF myosins have an ancient and conserved role in filopod formation.


Asunto(s)
Dictyostelium/genética , Dictyostelium/metabolismo , Evolución Molecular , Miosinas/genética , Miosinas/metabolismo , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Seudópodos/genética , Seudópodos/metabolismo , Amebozoos/genética , Amebozoos/metabolismo , Animales , Secuencia Conservada , Dominios FERM/genética , Técnicas de Inactivación de Genes , Genes Protozoarios , Proteínas Motoras Moleculares/química , Proteínas Motoras Moleculares/genética , Proteínas Motoras Moleculares/metabolismo , Miosinas/química , Filogenia , Proteínas Protozoarias/química , Seudópodos/química
5.
PLoS One ; 11(10): e0162331, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27706148

RESUMEN

Protein kinase C α (PKCα) is a nodal regulator in several intracellular signaling networks. PKCα is composed of modular domains that interact with each other to dynamically regulate spatial-temporal function. We find that PKCα specifically, rapidly and reversibly self-assembles in the presence of calcium in vitro. This phenomenon is dependent on, and can be modulated by an intramolecular interaction between the C1a and C2 protein domains of PKCα. Next, we monitor self-assembly of PKC-mCitrine fusion proteins using time-resolved and steady-state homoFRET. HomoFRET between full-length PKCα molecules is observed when in solution with both calcium and liposomes containing either diacylglycerol (DAG) or phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2). Surprisingly, the C2 domain is sufficient to cluster on liposomes containing PI(4,5)P2, indicating the C1a domain is not required for self-assembly in this context. We conclude that three distinct clustered states of PKCα can be formed depending on what combination of cofactors are bound, but Ca2+ is minimally required and sufficient for clustering.


Asunto(s)
Calcio/metabolismo , Proteína Quinasa C-alfa/metabolismo , Animales , Células CHO , Calcio/química , Cromatografía en Gel , Cricetinae , Cricetulus , Diglicéridos/química , Diglicéridos/metabolismo , Dispersión Dinámica de Luz , Transferencia Resonante de Energía de Fluorescencia , Humanos , Liposomas/química , Liposomas/metabolismo , Fosfatidilinositol 4,5-Difosfato/química , Fosfatidilinositol 4,5-Difosfato/metabolismo , Dominios Proteicos , Pliegue de Proteína , Proteína Quinasa C-alfa/química , Proteína Quinasa C-alfa/genética , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , Células Sf9
6.
Biochem Biophys Res Commun ; 456(1): 151-5, 2015 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-25446114

RESUMEN

We have used quantitative epifluorescence microscopy of fluorescent ATP to measure single-nucleotide turnover in skinned skeletal muscle fibers from mouse models of female aging and hormone treatment. Aging causes declines in muscle strength, often leading to frailty, disability, and loss of independence for the elderly. Female muscle is additionally affected by age due to reduction of ovarian hormone production with menopause. Estradiol (E2) is the key hormonal signal to skeletal muscle in females, and strength loss is attenuated by E2 treatment. To investigate E2 mechanisms on skeletal muscle, single fibers were isolated from sham-operated or ovariectomized (OVX) mice, with or without E2 treatment, and were incubated with 2'-(or-3')-O-(N-methylanthraniloyl) adenosine 5'-triphosphate (mantATP). We measured decay of mantATP fluorescence in an ATP-chase experiment, as pioneered by Cooke and coworkers, who unveiled a novel regulated state of muscle myosin characterized by slow nucleotide turnover on the order of minutes, termed the super-relaxed state (SRX). We detected a slow phase of nucleotide turnover in a portion of the myosin heads from sham fibers, consistent with SRX. Turnover was substantially faster in OVX fibers, with a turnover time constant for the slow phase of 65 ± 8s as compared to 102 ± 7s for sham fibers. 60-days E2 treatment in OVX mice substantially reversed this effect on SRX, while acute exposure of isolated muscles from OVX mice to E2 had no effect. We conclude that E2-mediated signaling reversibly regulates slow ATP turnover by myosin. Age- and hormone-related muscle functional losses may be targetable at the level of myosin structure/function for strategies to offset weakness and metabolic changes that occur with age.


Asunto(s)
Estradiol/fisiología , Fibras Musculares Esqueléticas/metabolismo , Miosinas/metabolismo , Actinas/metabolismo , Adenosina Trifosfato/química , Animales , Estradiol/deficiencia , Femenino , Hormonas/fisiología , Ratones , Ratones Endogámicos C57BL , Debilidad Muscular/patología , Músculo Esquelético/metabolismo , Nucleótidos/química , Nucleótidos/metabolismo , Ovariectomía , Fosforilación , Transducción de Señal , Factores de Tiempo
7.
Rev Sci Instrum ; 85(11): 113101, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25430092

RESUMEN

We describe a nanosecond time-resolved fluorescence spectrometer that acquires fluorescence decay waveforms from each well of a 384-well microplate in 3 min with signal-to-noise exceeding 400 using direct waveform recording. The instrument combines high-energy pulsed laser sources (5-10 kHz repetition rate) with a photomultiplier and high-speed digitizer (1 GHz) to record a fluorescence decay waveform after each pulse. Waveforms acquired from rhodamine or 5-((2-aminoethyl)amino) naphthalene-1-sulfonic acid dyes in a 384-well plate gave lifetime measurements 5- to 25-fold more precise than the simultaneous intensity measurements. Lifetimes as short as 0.04 ns were acquired by interleaving with an effective sample rate of 5 GHz. Lifetime measurements resolved mixtures of single-exponential dyes with better than 1% accuracy. The fluorescence lifetime plate reader enables multiple-well fluorescence lifetime measurements with an acquisition time of 0.5 s per well, suitable for high-throughput fluorescence lifetime screening applications.


Asunto(s)
Fluorescencia , Colorantes Fluorescentes/química , Modelos Químicos , Espectrometría de Fluorescencia/instrumentación , Espectrometría de Fluorescencia/métodos
8.
J Biol Chem ; 288(48): 34839-49, 2013 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-24145034

RESUMEN

Members of the kinesin superfamily of molecular motors differ in several key structural domains, which probably allows these molecular motors to serve the different physiologies required of them. One of the most variable of these is a stem-loop motif referred to as L5. This loop is longest in the mitotic kinesin Eg5, and previous structural studies have shown that it can assume different conformations in different nucleotide states. However, enzymatic domains often consist of a mixture of conformations whose distribution shifts in response to substrate binding or product release, and this information is not available from the "static" images that structural studies provide. We have addressed this issue in the case of Eg5 by attaching a fluorescent probe to L5 and examining its fluorescence, using both steady state and time-resolved methods. This reveals that L5 assumes an equilibrium mixture of three orientations that differ in their local environment and segmental mobility. Combining these studies with transient state kinetics demonstrates that there is a major shift in this distribution during transitions that interconvert weak and strong microtubule binding states. Finally, in conjunction with previous cryo-EM reconstructions of Eg5·microtubule complexes, these fluorescence studies suggest a model in which L5 regulates both nucleotide and microtubule binding through a set of reversible interactions with helix α3. We propose that these features facilitate the production of sustained opposing force by Eg5, which underlies its role in supporting formation of a bipolar spindle in mitosis.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Cinesinas/química , Microtúbulos/ultraestructura , Mitosis/genética , Adenosina Trifosfatasas/química , Adenilil Imidodifosfato/química , Sitios de Unión , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Cinesinas/genética , Cinesinas/ultraestructura , Cinética , Microscopía Electrónica , Microtúbulos/química , Unión Proteica/genética , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína
9.
Proc Natl Acad Sci U S A ; 110(18): 7211-6, 2013 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-23589853

RESUMEN

We have used transient kinetics, nanosecond time-resolved fluorescence resonance energy transfer (FRET), and kinetics simulations to resolve a structural transition in the Dictyostelium myosin II relay helix during the actin-activated power stroke. The relay helix plays a critical role in force generation in myosin, coupling biochemical changes in the ATPase site with the force-transducing rotation of the myosin light-chain domain. Previous research in the absence of actin showed that ATP binding to myosin induces a dynamic equilibrium between a bent prepower stroke state of the relay helix and a straight postpower stroke state, which dominates in the absence of ATP or when ADP is bound. We now ask whether actin binding reverses this transition and if so, how this reversal is coordinated with actin-activated phosphate release. We labeled a Cys-lite Dictyostelium myosin II motor domain with donor and acceptor probes at two engineered Cys residues designed to detect relay helix bending. We then performed transient time-resolved FRET following stopped-flow mixing of actin with labeled myosin, preincubated with ATP. We determined the kinetics of actin-activated phosphate release, using fluorescent phosphate-binding protein. The results show that actin binding to the myosin.ADP.P complex straightens the relay helix before phosphate dissociation. This actin-activated relay helix straightening is reversible, but phosphate irreversibly dissociates from the postpower stroke state, preventing reversal of the power stroke. Thus, relay helix straightening gates phosphate dissociation, whereas phosphate dissociation provides the thermodynamic driving force underlying force production.


Asunto(s)
Actinas/metabolismo , Dominio Catalítico , Sistemas de Computación , Dictyostelium/metabolismo , Miosina Tipo II/química , Animales , Fenómenos Biomecánicos , Cristalografía por Rayos X , Espectroscopía de Resonancia por Spin del Electrón , Transferencia Resonante de Energía de Fluorescencia , Cinética , Miosina Tipo II/metabolismo , Fosfatos/metabolismo , Estructura Secundaria de Proteína , Conejos , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...