Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
PLoS One ; 19(5): e0303176, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38728305

RESUMEN

BACKGROUND: The COVID-19 pandemic was characterised by rapid waves of disease, carried by the emergence of new and more infectious SARS-CoV-2 virus variants. How the pandemic unfolded in various locations during its first two years has yet to be sufficiently covered. To this end, here we are looking at the circulating SARS-CoV-2 variants, their diversity, and hospitalisation rates in Estonia in the period from March 2000 to March 2022. METHODS: We sequenced a total of 27,550 SARS-CoV-2 samples in Estonia between March 2020 and March 2022. High-quality sequences were genotyped and assigned to Nextstrain clades and Pango lineages. We used regression analysis to determine the dynamics of lineage diversity and the probability of clade-specific hospitalisation stratified by age and sex. RESULTS: We successfully sequenced a total of 25,375 SARS-CoV-2 genomes (or 92%), identifying 19 Nextstrain clades and 199 Pango lineages. In 2020 the most prevalent clades were 20B and 20A. The various subsequent waves of infection were driven by 20I (Alpha), 21J (Delta) and Omicron clades 21K and 21L. Lineage diversity via the Shannon index was at its highest during the Delta wave. About 3% of sequenced SARS-CoV-2 samples came from hospitalised individuals. Hospitalisation increased markedly with age in the over-forties, and was negligible in the under-forties. Vaccination decreased the odds of hospitalisation in over-forties. The effect of vaccination on hospitalisation rates was strongly dependent upon age but was clade-independent. People who were infected with Omicron clades had a lower hospitalisation likelihood in age groups of forty and over than was the case with pre-Omicron clades regardless of vaccination status. CONCLUSIONS: COVID-19 disease waves in Estonia were driven by the Alpha, Delta, and Omicron clades. Omicron clades were associated with a substantially lower hospitalisation probability than pre-Omicron clades. The protective effect of vaccination in reducing hospitalisation likelihood was independent of the involved clade.


Asunto(s)
COVID-19 , Hospitalización , SARS-CoV-2 , Humanos , COVID-19/epidemiología , COVID-19/virología , Hospitalización/estadística & datos numéricos , SARS-CoV-2/genética , SARS-CoV-2/aislamiento & purificación , SARS-CoV-2/clasificación , Masculino , Femenino , Persona de Mediana Edad , Adulto , Anciano , Estonia/epidemiología , Genoma Viral , Adulto Joven , Filogenia , Pandemias , Adolescente , Niño , Lactante , Preescolar , Anciano de 80 o más Años
2.
PLoS Genet ; 19(9): e1010932, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37721944

RESUMEN

The eQTL Catalogue is an open database of uniformly processed human molecular quantitative trait loci (QTLs). We are continuously updating the resource to further increase its utility for interpreting genetic associations with complex traits. Over the past two years, we have increased the number of uniformly processed studies from 21 to 31 and added X chromosome QTLs for 19 compatible studies. We have also implemented Leafcutter to directly identify splice-junction usage QTLs in all RNA sequencing datasets. Finally, to improve the interpretability of transcript-level QTLs, we have developed static QTL coverage plots that visualise the association between the genotype and average RNA sequencing read coverage in the region for all 1.7 million fine mapped associations. To illustrate the utility of these updates to the eQTL Catalogue, we performed colocalisation analysis between vitamin D levels in the UK Biobank and all molecular QTLs in the eQTL Catalogue. Although most GWAS loci colocalised both with eQTLs and transcript-level QTLs, we found that visual inspection could sometimes be used to distinguish primary splicing QTLs from those that appear to be secondary consequences of large-effect gene expression QTLs. While these visually confirmed primary splicing QTLs explain just 6/53 of the colocalising signals, they are significantly less pleiotropic than eQTLs and identify a prioritised causal gene in 4/6 cases.


Asunto(s)
Herencia Multifactorial , Sitios de Carácter Cuantitativo , Humanos , Sitios de Carácter Cuantitativo/genética , Genotipo , Secuencia de Bases , Estudio de Asociación del Genoma Completo , Polimorfismo de Nucleótido Simple
3.
bioRxiv ; 2023 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-37425722

RESUMEN

The genome engineering capability of the CRISPR/Cas system depends on the DNA repair machinery to generate the final outcome. Several genes can have an impact on mutations created, but their exact function and contribution to the result of the repair are not completely characterised. This lack of knowledge has limited the ability to comprehend and regulate the editing outcomes. Here, we measure how the absence of 21 repair genes changes the mutation outcomes of Cas9-generated cuts at 2,812 synthetic target sequences in mouse embryonic stem cells. Absence of key non-homologous end joining genes Lig4, Xrcc4, and Xlf abolished small insertions and deletions, while disabling key microhomology-mediated repair genes Nbn and Polq reduced frequency of longer deletions. Complex alleles of combined insertion and deletions were preferentially generated in the absence of Xrcc6. We further discover finer structure in the outcome frequency changes for single nucleotide insertions and deletions between large microhomologies that are differentially modulated by the knockouts. We use the knowledge of the reproducible variation across repair milieus to build predictive models of Cas9 editing results that outperform the current standards. This work improves our understanding of DNA repair gene function, and provides avenues for more precise modulation of CRISPR/Cas9-generated mutations.

4.
Nucleic Acids Res ; 51(W1): W207-W212, 2023 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-37144459

RESUMEN

g:Profiler is a reliable and up-to-date functional enrichment analysis tool that supports various evidence types, identifier types and organisms. The toolset integrates many databases, including Gene Ontology, KEGG and TRANSFAC, to provide a comprehensive and in-depth analysis of gene lists. It also provides interactive and intuitive user interfaces and supports ordered queries and custom statistical backgrounds, among other settings. g:Profiler provides multiple programmatic interfaces to access its functionality. These can be easily integrated into custom workflows and external tools, making them valuable resources for researchers who want to develop their own solutions. g:Profiler has been available since 2007 and is used to analyse millions of queries. Research reproducibility and transparency are achieved by maintaining working versions of all past database releases since 2015. g:Profiler supports 849 species, including vertebrates, plants, fungi, insects and parasites, and can analyse any organism through user-uploaded custom annotation files. In this update article, we introduce a novel filtering method highlighting Gene Ontology driver terms, accompanied by new graph visualizations providing a broader context for significant Gene Ontology terms. As a leading enrichment analysis and gene list interoperability service, g:Profiler offers a valuable resource for genetics, biology and medical researchers. It is freely accessible at https://biit.cs.ut.ee/gprofiler.


Asunto(s)
Mapeo Cromosómico , Biología Computacional , Genes , Programas Informáticos , Animales , Mapeo Cromosómico/instrumentación , Mapeo Cromosómico/métodos , Bases de Datos Genéticas , Internet , Reproducibilidad de los Resultados , Interfaz Usuario-Computador , Biología Computacional/instrumentación , Biología Computacional/métodos , Genes/genética , Humanos
5.
bioRxiv ; 2023 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-37066341

RESUMEN

Splicing quantitative trait loci (QTLs) have been implicated as a common mechanism underlying complex trait associations. However, utilising splicing QTLs in target discovery and prioritisation has been challenging due to extensive data normalisation which often renders the direction of the genetic effect as well as its magnitude difficult to interpret. This is further complicated by the fact that strong expression QTLs often manifest as weak splicing QTLs and vice versa, making it difficult to uniquely identify the underlying molecular mechanism at each locus. We find that these ambiguities can be mitigated by visualising the association between the genotype and average RNA sequencing read coverage in the region. Here, we generate these QTL coverage plots for 1.7 million molecular QTL associations in the eQTL Catalogue identified with five quantification methods. We illustrate the utility of these QTL coverage plots by performing colocalisation between vitamin D levels in the UK Biobank and all molecular QTLs in the eQTL Catalogue. We find that while visually confirmed splicing QTLs explain just 6/53 of the colocalising signals, they are significantly less pleiotropic than eQTLs and identify a prioritised causal gene in 4/6 cases. All our association summary statistics and QTL coverage plots are freely available at https://www.ebi.ac.uk/eqtl/.

6.
medRxiv ; 2023 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-37034709

RESUMEN

Introduction: Epilepsy is a common central nervous system disorder characterized by abnormal brain electrical activity. We aimed to compare the metabolic profiles of plasma from patients with epilepsy across different etiologies, seizure frequency, seizure type, and patient age to try to identify common disrupted pathways. Material and methods: We used data from three separate cohorts. The first cohort (PED-C) consisted of 31 pediatric patients with suspicion of a genetic disorder with unclear etiology; the second cohort (AD-C) consisted of 250 adults from the Estonian Biobank (EstBB), and the third cohort consisted of 583 adults ≥ 69 years of age from the EstBB (ELD-C). We compared untargeted metabolomics and lipidomics data between individuals with and without epilepsy in each cohort. Results: In the PED-C, significant alterations (p-value <0.05) were detected in sixteen different glycerophosphatidylcholines (GPC), dimethylglycine and eicosanedioate (C20-DC). In the AD-C, nine significantly altered metabolites were found, mainly triacylglycerides (TAG), which are also precursors in the GPC synthesis pathway. In the ELD-C, significant changes in twenty metabolites including multiple TAGs were observed in the metabolic profile of participants with previously diagnosed epilepsy. Pathway analysis revealed that among the metabolites that differ significantly between epilepsy-positive and epilepsy-negative patients in the PED-C, the lipid superpathway (p = 3.2*10-4) and phosphatidylcholine (p = 9.3*10-8) and lysophospholipid (p = 5.9*10-3) subpathways are statistically overrepresented. Analogously, in the AD-C, the triacylglyceride subclass turned out to be statistically overrepresented (p = 8.5*10-5) with the lipid superpathway (p = 1.4*10-2). The presented p-values are FDR-corrected. Conclusion: Our results suggest that cell membrane fluidity may have a significant role in the mechanism of epilepsy, and changes in lipid balance may indicate epilepsy. However, further studies are needed to evaluate whether untargeted metabolomics analysis could prove helpful in diagnosing epilepsy earlier.

7.
Nat Biotechnol ; 41(10): 1446-1456, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36797492

RESUMEN

Most short sequences can be precisely written into a selected genomic target using prime editing; however, it remains unclear what factors govern insertion. We design a library of 3,604 sequences of various lengths and measure the frequency of their insertion into four genomic sites in three human cell lines, using different prime editor systems in varying DNA repair contexts. We find that length, nucleotide composition and secondary structure of the insertion sequence all affect insertion rates. We also discover that the 3' flap nucleases TREX1 and TREX2 suppress the insertion of longer sequences. Combining the sequence and repair features into a machine learning model, we can predict relative frequency of insertions into a site with R = 0.70. Finally, we demonstrate how our accurate prediction and user-friendly software help choose codon variants of common fusion tags that insert at high efficiency, and provide a catalog of empirically determined insertion rates for over a hundred useful sequences.


Asunto(s)
Reparación del ADN , Elementos Transponibles de ADN , Humanos , Reparación del ADN/genética , Edición Génica , Sistemas CRISPR-Cas
8.
Hum Reprod ; 38(4): 629-643, 2023 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-36749097

RESUMEN

STUDY QUESTION: Are there specific autoantibody profiles in patients with endometriosis that are different from those in controls? SUMMARY ANSWER: This study did not reveal a significantly higher prevalence of autoantibodies in the studied groups of patients. WHAT IS KNOWN ALREADY: Various inflammatory factors are postulated to be involved in the pathomechanisms of endometriosis, and a potential link exists with autoimmune diseases, which may also play an important role. As the diagnosis of endometriosis remains invasive, it can only be confirmed using laparoscopy with histopathological examination of tissues. Numerous studies have focused on identifying useful biomarkers to confirm the disease, but without unequivocal effects. Autoantibodies are promising molecules that serve as potential prognostic factors. STUDY DESIGN, SIZE, DURATION: A multicentre, cross-sectional study was conducted over 18 months (between 2018 and 2019), at eight Departments of Obstetrics and Gynaecology in several cities across Poland on 137 patients undergoing laparoscopic examination for the diagnosis of endometriosis. PARTICIPANTS/MATERIALS, SETTINGS, METHODS: During laparoscopy, we obtained plasma samples from 137 patients and peritoneal fluid (PF) samples from 98 patients. Patients with autoimmune diseases were excluded from the study. Autoantibody profiling was performed using HuProt v3.1 human proteome microarrays. MAIN RESULTS AND THE ROLE OF CHANCE: We observed no significant differences in the expression of autoantibodies in the plasma or PF between the endometriosis and control groups. The study revealed that in the PF of women with Stage II endometriosis, compared with other stages, there were significantly higher reactivity signals for ANAPC15 and GABPB1 (adj. P < 0.016 and adj. P < 0.026, respectively; logFC > 1 in both cases). Comparison of the luteal and follicular phases in endometriosis patients revealed that levels of NEIL1 (adj. P < 0.029), MAGEB4 (adj. P < 0.029), and TNIP2 (adj. P < 0.042) autoantibody signals were significantly higher in the luteal phase than in the follicular phase in PF samples of patients with endometriosis. No differences were observed between the two phases of the cycle in plasma or between women with endometriosis and controls. Clustering of PF and plasma samples did not reveal unique autoantibody profiles for endometriosis; however, comparison of PF and plasma in the same patient showed a high degree of concordance. LIMITATIONS, REASONS FOR CAUTION: Although this study was performed using the highest-throughput protein array available, it does not cover the entire human proteome and cannot be used to study potentially promising post-translational modifications. Autoantibody levels depend on numerous factors, such as infections; therefore the autoantibody tests should be repeated for more objective results. WIDER IMPLICATIONS OF THE FINDINGS: Although endometriosis has been linked to different autoimmune diseases, it is unlikely that autoimmune responses mediated by specific autoantibodies play a pivotal role in the pathogenesis of this inflammatory disease. Our study shows that in searching for biomarkers of endometriosis, it may be more efficient to use higher-throughput proteomic microarrays, which may allow the detection of potentially new biomarkers. Only research on such a scale, and possibly with different technologies, can help discover biomarkers that will change the method of endometriosis diagnosis. STUDY FUNDING/COMPETING INTEREST(S): This study was funded by a grant from the Polish Ministry of Health (grant no. 6/6/4/1/NPZ/2017/1210/1352). It was also funded by the Estonian Research Council (grant PRG1076) and the Horizon 2020 Innovation Grant (ERIN; grant no. EU952516), Enterprise Estonia (grant no. EU48695), and MSCA-RISE-2020 project TRENDO (grant no. 101008193). The authors declare that there is no conflict of interest. TRIAL REGISTRATION NUMBER: N/A.


Asunto(s)
Enfermedades Autoinmunes , ADN Glicosilasas , Endometriosis , Humanos , Femenino , Endometriosis/patología , Líquido Ascítico/metabolismo , Autoanticuerpos , Estudios Transversales , Proteoma/metabolismo , Proteómica , Biomarcadores , Enfermedades Autoinmunes/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , ADN Glicosilasas/metabolismo
9.
HGG Adv ; 3(4): 100133, 2022 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-36035246

RESUMEN

Copy-number variations (CNV) are believed to play an important role in a wide range of complex traits, but discovering such associations remains challenging. While whole-genome sequencing (WGS) is the gold-standard approach for CNV detection, there are several orders of magnitude more samples with available genotyping microarray data. Such array data can be exploited for CNV detection using dedicated software (e.g., PennCNV); however, these calls suffer from elevated false-positive and -negative rates. In this study, we developed a CNV quality score that weights PennCNV calls (pCNVs) based on their likelihood of being true positive. First, we established a measure of pCNV reliability by leveraging evidence from multiple omics data (WGS, transcriptomics, and methylomics) obtained from the same samples. Next, we built a predictor of omics-confirmed pCNVs, termed omics-informed quality score (OQS), using only PennCNV software output parameters. Promisingly, OQS assigned to pCNVs detected in close family members was up to 35% higher than the OQS of pCNVs not carried by other relatives (p < 3.0 × 10-90), outperforming other scores. Finally, in an association study of four anthropometric traits in 89,516 Estonian Biobank samples, the use of OQS led to a relative increase in the trait variance explained by CNVs of up to 56% compared with published quality filtering methods or scores. Overall, we put forward a flexible framework to improve any CNV detection method leveraging multi-omics evidence, applied it to improve PennCNV calls, and demonstrated its utility by improving the statistical power for downstream association analyses.

10.
Aging Cell ; 21(5): e13607, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35397197

RESUMEN

Age-related changes in human T-cell populations are important contributors to immunosenescence. In particular, terminally differentiated CD8+ effector memory CD45RA+ TEMRA cells and their subsets have characteristics of cellular senescence, accumulate in older individuals, and are increased in age-related chronic inflammatory diseases. In a detailed T-cell profiling among individuals over 65 years of age, we found a high interindividual variation among CD8+ TEMRA populations. CD8+ TEMRA proportions correlated positively with cytomegalovirus (CMV) antibody levels, however, not with the chronological age. In the analysis of over 90 inflammation proteins, we identified plasma TRANCE/RANKL levels to associate with several differentiated T-cell populations, including CD8+ TEMRA and its CD28- subsets. Given the strong potential of CD8+ TEMRA cells as a biomarker for immunosenescence, we used deep-amplicon bisulfite sequencing to match their frequencies in flow cytometry with CpG site methylation levels and developed a computational model to predict CD8+ TEMRA cell proportions from whole blood genomic DNA. Our findings confirm the association of CD8+ TEMRA and its subsets with CMV infection and provide a novel tool for their high throughput epigenetic quantification as a biomarker of immunosenescence.


Asunto(s)
Infecciones por Citomegalovirus , Inmunosenescencia , Anciano , Antígenos CD28/metabolismo , Linfocitos T CD8-positivos , Infecciones por Citomegalovirus/genética , Epigénesis Genética , Humanos , Memoria Inmunológica , Subgrupos de Linfocitos T
11.
Front Immunol ; 12: 635569, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33868260

RESUMEN

While there is convincing evidence on the role of Aire-positive medullary thymic epithelial cells (mTEC) in the induction of central tolerance, the nature and function of post-Aire mTECs and Hassall's corpuscles have remained enigmatic. Here we summarize the existing data on these late stages of mTEC differentiation with special focus on their potential to contribute to central tolerance induction by triggering the unique pro-inflammatory microenvironment in the thymus. In order to complement the existing evidence that has been obtained from mouse models, we performed proteomic analysis on microdissected samples from human thymic medullary areas at different differentiation stages. The analysis confirms that at the post-Aire stages, the mTECs lose their nuclei but maintain machinery required for translation and exocytosis and also upregulate proteins specific to keratinocyte differentiation and cornification. In addition, at the late stages of differentiation, the human mTECs display a distinct pro-inflammatory signature, including upregulation of the potent endogenous TLR4 agonist S100A8/S100A9. Collectively, the study suggests a novel mechanism by which the post-Aire mTECs and Hassall's corpuscles contribute to the thymic microenvironment with potential cues on the induction of central tolerance.


Asunto(s)
Diferenciación Celular , Microambiente Celular , Tolerancia Central , Células Epiteliales/metabolismo , Mediadores de Inflamación/metabolismo , Timo/metabolismo , Factores de Transcripción/metabolismo , Animales , Calgranulina A/metabolismo , Calgranulina B/metabolismo , Preescolar , Células Epiteliales/inmunología , Humanos , Lactante , Ratones , Proteoma , Proteómica , Timo/inmunología , Receptor Toll-Like 4/metabolismo , Proteína AIRE
12.
Sci Rep ; 10(1): 20533, 2020 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-33239683

RESUMEN

SARS-CoV-2 infection has a risk to develop into life-threatening COVID-19 disease. Whereas age, hypertension, and chronic inflammatory conditions are risk factors, underlying host factors and markers for disease severity, e.g. requiring intensive care unit (ICU) treatment, remain poorly defined. To this end, we longitudinally profiled blood inflammation markers, antibodies, and 101 plasma proteins of hospitalized COVID-19 patients who did or did not require ICU admission. While essentially all patients displayed SARS-CoV-2-specific antibodies and virus-neutralization capacity within 12-15 days, a rapid, mostly transient upregulation of selective inflammatory markers including IL-6, CXCL10, CXCL11, IFNγ, IL-10, and monocyte-attracting CCL2, CCL7 and CCL8, was particularly evident in ICU patients. In addition, there was consistent and sustained upregulation of apoptosis-associated proteins CASP8, TNFSF14, HGF, and TGFB1, with HGF discriminating between ICU and non-ICU cohorts. Thus, COVID-19 is associated with a selective inflammatory milieu within which the apoptotic pathway is a cardinal feature with potential to aid risk-based patient stratification.


Asunto(s)
Apoptosis , Prueba de COVID-19/métodos , COVID-19/sangre , COVID-19/diagnóstico , Caspasa 8/sangre , Quimiocinas/sangre , Proteoma , SARS-CoV-2/genética , Índice de Severidad de la Enfermedad , Adulto , Anciano , Anciano de 80 o más Años , Biomarcadores/sangre , COVID-19/virología , Femenino , Hospitalización , Humanos , Inflamación/sangre , Unidades de Cuidados Intensivos , Estudios Longitudinales , Masculino , Persona de Mediana Edad , Proteómica/métodos , Factores de Riesgo , Regulación hacia Arriba , Adulto Joven
13.
BMC Bioinformatics ; 21(1): 411, 2020 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-32942983

RESUMEN

BACKGROUND: Protein microarray is a well-established approach for characterizing activity levels of thousands of proteins in a parallel manner. Analysis of protein microarray data is complex and time-consuming, while existing solutions are either outdated or challenging to use without programming skills. The typical data analysis pipeline consists of a data preprocessing step, followed by differential expression analysis, which is then put into context via functional enrichment. Normally, biologists would need to assemble their own workflow by combining a set of unrelated tools to analyze experimental data. Provided that most of these tools are developed independently by various bioinformatics groups, making them work together could be a real challenge. RESULTS: Here we present PAWER, the online web tool dedicated solely to protein microarray analysis. PAWER enables biologists to carry out all the necessary analysis steps in one go. PAWER provides access to state-of-the-art computational methods through the user-friendly interface, resulting in publication-ready illustrations. We also provide an R package for more advanced use cases, such as bespoke analysis workflows. CONCLUSIONS: PAWER is freely available at https://biit.cs.ut.ee/pawer .


Asunto(s)
Biología Computacional/métodos , Análisis por Matrices de Proteínas/métodos , Humanos
14.
Elife ; 92020 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-32880574

RESUMEN

Understanding the causal processes that contribute to disease onset and progression is essential for developing novel therapies. Although trans-acting expression quantitative trait loci (trans-eQTLs) can directly reveal cellular processes modulated by disease variants, detecting trans-eQTLs remains challenging due to their small effect sizes. Here, we analysed gene expression and genotype data from six blood cell types from 226 to 710 individuals. We used co-expression modules inferred from gene expression data with five methods as traits in trans-eQTL analysis to limit multiple testing and improve interpretability. In addition to replicating three established associations, we discovered a novel trans-eQTL near SLC39A8 regulating a module of metallothionein genes in LPS-stimulated monocytes. Interestingly, this effect was mediated by a transient cis-eQTL present only in early LPS response and lost before the trans effect appeared. Our analyses highlight how co-expression combined with functional enrichment analysis improves the identification and prioritisation of trans-eQTLs when applied to emerging cell-type-specific datasets.


Asunto(s)
Células Sanguíneas/metabolismo , Expresión Génica , Redes Reguladoras de Genes/genética , Genotipo , Sitios de Carácter Cuantitativo , Humanos
15.
PLoS Comput Biol ; 16(7): e1007976, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32702016

RESUMEN

ELIXIR is a pan-European intergovernmental organisation for life science that aims to coordinate bioinformatics resources in a single infrastructure across Europe; bioinformatics training is central to its strategy, which aims to develop a training community that spans all ELIXIR member states. In an evidence-based approach for strengthening bioinformatics training programmes across Europe, the ELIXIR Training Platform, led by the ELIXIR EXCELERATE Quality and Impact Assessment Subtask in collaboration with the ELIXIR Training Coordinators Group, has implemented an assessment strategy to measure quality and impact of its entire training portfolio. Here, we present ELIXIR's framework for assessing training quality and impact, which includes the following: specifying assessment aims, determining what data to collect in order to address these aims, and our strategy for centralised data collection to allow for ELIXIR-wide analyses. In addition, we present an overview of the ELIXIR training data collected over the past 4 years. We highlight the importance of a coordinated and consistent data collection approach and the relevance of defining specific metrics and answer scales for consortium-wide analyses as well as for comparison of data across iterations of the same course.


Asunto(s)
Biología Computacional/educación , Control de Calidad , Algoritmos , Investigación Biomédica , Biología Computacional/normas , Curriculum , Recolección de Datos , Bases de Datos Factuales , Educación Continua , Europa (Continente) , Evaluación de Programas y Proyectos de Salud , Reproducibilidad de los Resultados , Investigadores , Programas Informáticos , Interfaz Usuario-Computador
18.
F1000Res ; 92020.
Artículo en Inglés | MEDLINE | ID: mdl-33564394

RESUMEN

g:Profiler ( https://biit.cs.ut.ee/gprofiler) is a widely used gene list functional profiling and namespace conversion toolset that has been contributing to reproducible biological data analysis already since 2007. Here we introduce the accompanying R package, gprofiler2, developed to facilitate programmatic access to g:Profiler computations and databases via REST API. The gprofiler2 package provides an easy-to-use functionality that enables researchers to incorporate functional enrichment analysis into automated analysis pipelines written in R. The package also implements interactive visualisation methods to help to interpret the enrichment results and to illustrate them for publications. In addition, gprofiler2 gives access to the versatile gene/protein identifier conversion functionality in g:Profiler enabling to map between hundreds of different identifier types or orthologous species. The gprofiler2 package is freely available at the CRAN repository.


Asunto(s)
Biología Computacional , Perfilación de la Expresión Génica , Programas Informáticos
19.
Sci Rep ; 9(1): 16738, 2019 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-31723213

RESUMEN

Endometriosis is a common gynaecological condition characterized by severe pelvic pain and/or infertility. The combination of nonspecific symptoms and invasive laparoscopic diagnostics have prompted researchers to evaluate potential biomarkers that would enable a non-invasive diagnosis of endometriosis. Endometriosis is an inflammatory disease thus different cytokines represent potential diagnostic biomarkers. As panels of biomarkers are expected to enable better separation between patients and controls we evaluated 40 different cytokines in plasma samples of 210 patients (116 patients with endometriosis; 94 controls) from two medical centres (Slovenian, Austrian). Results of the univariate statistical analysis showed no differences in concentrations of the measured cytokines between patients and controls, confirmed by principal component analysis showing no clear separation amongst these two groups. In order to validate the hypothesis of a more profound (non-linear) differentiating dependency between features, machine learning methods were used. We trained four common machine learning algorithms (decision tree, linear model, k-nearest neighbour, random forest) on data from plasma levels of proteins and patients' clinical data. The constructed models, however, did not separate patients with endometriosis from the controls with sufficient sensitivity and specificity. This study thus indicates that plasma levels of the selected cytokines have limited potential for diagnosis of endometriosis.


Asunto(s)
Biomarcadores/sangre , Citocinas/sangre , Endometriosis/sangre , Endometriosis/diagnóstico , Adulto , Estudios de Casos y Controles , Femenino , Humanos , Pronóstico , Estudios Prospectivos
20.
Sci Data ; 6(1): 151, 2019 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-31413325

RESUMEN

Alzheimer's disease and other types of dementia are the top cause for disabilities in later life and various types of experiments have been performed to understand the underlying mechanisms of the disease with the aim of coming up with potential drug targets. These experiments have been carried out by scientists working in different domains such as proteomics, molecular biology, clinical diagnostics and genomics. The results of such experiments are stored in the databases designed for collecting data of similar types. However, in order to get a systematic view of the disease from these independent but complementary data sets, it is necessary to combine them. In this study we describe a heterogeneous network-based data set for Alzheimer's disease (HENA). Additionally, we demonstrate the application of state-of-the-art graph convolutional networks, i.e. deep learning methods for the analysis of such large heterogeneous biological data sets. We expect HENA to allow scientists to explore and analyze their own results in the broader context of Alzheimer's disease research.


Asunto(s)
Enfermedad de Alzheimer/genética , Aprendizaje Profundo , Epistasis Genética , Expresión Génica , Humanos , Mapeo de Interacción de Proteínas , Técnicas del Sistema de Dos Híbridos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...