Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 111(49): 17636-41, 2014 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-25413364

RESUMEN

Recurrent axon collaterals are a major means of communication between spiny projection neurons (SPNs) in the striatum and profoundly affect the function of the basal ganglia. However, little is known about the molecular and cellular mechanisms that underlie this communication. We show that intrastriatal nitric oxide (NO) signaling elevates the expression of the vesicular GABA transporter (VGAT) within recurrent collaterals of SPNs. Down-regulation of striatal NO signaling resulted in an attenuation of GABAergic signaling in SPN local collaterals, down-regulation of VGAT expression in local processes of SPNs, and impaired motor behavior. PKG1 and cAMP response element-binding protein are involved in the signal transduction that transcriptionally regulates VGAT by NO. These data suggest that transcriptional control of the vesicular GABA transporter by NO regulates GABA transmission and action selection.


Asunto(s)
Ganglios Basales/metabolismo , Guanilato Ciclasa/química , Neuronas/metabolismo , Óxido Nítrico/química , Transmisión Sináptica/fisiología , Ácido gamma-Aminobutírico/química , Animales , Axones/metabolismo , AMP Cíclico/metabolismo , Dopamina/metabolismo , Electrofisiología , Retroalimentación Fisiológica , Femenino , Proteínas Fluorescentes Verdes/metabolismo , Levodopa/química , Masculino , Ratones , Plasticidad Neuronal , Oxidopamina/química , Transducción de Señal , Proteínas del Transporte Vesicular de Aminoácidos Inhibidores/metabolismo
2.
Neuron ; 83(1): 178-88, 2014 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-24991961

RESUMEN

Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder. The debilitating choreic movements that plague HD patients have been attributed to striatal degeneration induced by the loss of cortically supplied brain-derived neurotrophic factor (BDNF). Here, we show that in mouse models of early symptomatic HD, BDNF delivery to the striatum and its activation of tyrosine-related kinase B (TrkB) receptors were normal. However, in striatal neurons responsible for movement suppression, TrkB receptors failed to properly engage postsynaptic signaling mechanisms controlling the induction of potentiation at corticostriatal synapses. Plasticity was rescued by inhibiting p75 neurotrophin receptor (p75NTR) signaling or its downstream target phosphatase-and-tensin-homolog-deleted-on-chromosome-10 (PTEN). Thus, corticostriatal synaptic dysfunction early in HD is attributable to a correctable defect in the response to BDNF, not its delivery.


Asunto(s)
Corteza Cerebral/fisiopatología , Cuerpo Estriado/fisiopatología , Modelos Animales de Enfermedad , Enfermedad de Huntington/fisiopatología , Receptor trkB/deficiencia , Transducción de Señal/genética , Animales , Corteza Cerebral/patología , Cuerpo Estriado/patología , Técnicas de Sustitución del Gen , Enfermedad de Huntington/genética , Enfermedad de Huntington/patología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Técnicas de Cultivo de Órganos , Receptor trkB/antagonistas & inhibidores , Receptor trkB/fisiología
3.
J Neurosci ; 32(27): 9124-32, 2012 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-22764222

RESUMEN

Mice carrying bacterial artificial chromosome (BAC) transgenes have become important tools for neuroscientists, providing a powerful means of dissecting complex neural circuits in the brain. Recently, it was reported that one popular line of these mice--mice possessing a BAC transgene with a D(2) dopamine receptor (Drd2) promoter construct coupled to an enhanced green fluorescent protein (eGFP) reporter--had abnormal striatal gene expression, physiology, and motor behavior. Unlike most of the work using BAC mice, this interesting study relied upon mice backcrossed on the outbred Swiss Webster (SW) strain that were homozygous for the Drd2-eGFP BAC transgene. The experiments reported here were conducted to determine whether mouse strain or zygosity was a factor in the reported abnormalities. As reported, SW mice were very sensitive to transgene expression. However, in more commonly used inbred strains of mice (C57BL/6, FVB/N) that were hemizygous for the transgene, the Drd2-eGFP BAC transgene did not alter striatal gene expression, physiology, or motor behavior. Thus, the use of inbred strains of mice that are hemizygous for the Drd2 BAC transgene provides a reliable tool for studying basal ganglia function.


Asunto(s)
Cuerpo Estriado/metabolismo , Regulación del Desarrollo de la Expresión Génica/genética , Proteínas Fluorescentes Verdes/genética , Ratones Transgénicos/genética , Fenotipo , Receptores de Dopamina D2/genética , Animales , Animales no Consanguíneos , Enfermedades de los Ganglios Basales/genética , Enfermedades de los Ganglios Basales/metabolismo , Enfermedades de los Ganglios Basales/fisiopatología , Conducta Animal/fisiología , Cromosomas Artificiales Bacterianos/genética , Cuerpo Estriado/fisiopatología , Modelos Animales de Enfermedad , Femenino , Hemicigoto , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos , Actividad Motora/genética , Especificidad de la Especie
4.
Neurobiol Dis ; 45(1): 409-16, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21964253

RESUMEN

The motor symptoms of Parkinson's disease (PD) are widely thought to arise from an imbalance in the activity of the two major striatal efferent pathways following the loss of dopamine (DA) signaling. In striatopallidal, indirect pathway spiny projection neurons (iSPNs), intrinsic excitability rises following the loss of inhibitory D2 receptor signaling. Because these receptors are normally counterbalanced by adenosine A2a adenosine receptors, antagonists of these receptors are being examined as an adjunct to conventional pharmacological therapies. However, little is known about the effects of sustained A2a receptor antagonism on striatal adaptations in PD models. To address this issue, the A2a receptor antagonist SCH58261 was systemically administered to DA-depleted mice. After 5 days of treatment, the effects of SCH58261 on iSPNs were examined in brain slices using electrophysiological and optical approaches. SCH58261 treatment did not prevent spine loss in iSPNs following depletion, but did significantly attenuate alterations in synaptic currents, spine morphology and dendritic excitability. In part, these effects were attributable to the ability of SCH58261 to blunt the effects of DA depletion on cholinergic interneurons, another striatal cell type that co-expresses A2a and D(2) receptors. Collectively, these results suggest that A2a receptor antagonism improves striatal function in PD models by attenuating iSPN adaptations to DA depletion.


Asunto(s)
Antagonistas del Receptor de Adenosina A2/farmacología , Cuerpo Estriado/efectos de los fármacos , Dopamina/metabolismo , Neuronas/efectos de los fármacos , Pirimidinas/farmacología , Triazoles/farmacología , Animales , Cuerpo Estriado/metabolismo , Dendritas/efectos de los fármacos , Dendritas/metabolismo , Ratones , Neuronas/metabolismo , Receptor de Adenosina A2A/metabolismo
5.
Neuron ; 67(2): 294-307, 2010 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-20670836

RESUMEN

Salient stimuli redirect attention and suppress ongoing motor activity. This attentional shift is thought to rely upon thalamic signals to the striatum to shift cortically driven action selection, but the network mechanisms underlying this interaction are unclear. Using a brain slice preparation that preserved cortico- and thalamostriatal connectivity, it was found that activation of thalamostriatal axons in a way that mimicked the response to salient stimuli induced a burst of spikes in striatal cholinergic interneurons that was followed by a pause lasting more than half a second. This patterned interneuron activity triggered a transient, presynaptic suppression of cortical input to both major classes of principal medium spiny neuron (MSN) that gave way to a prolonged enhancement of postsynaptic responsiveness in striatopallidal MSNs controlling motor suppression. This differential regulation of the corticostriatal circuitry provides a neural substrate for attentional shifts and cessation of ongoing motor activity with the appearance of salient environmental stimuli.


Asunto(s)
Acetilcolina/metabolismo , Corteza Cerebral/citología , Corteza Cerebral/fisiología , Cuerpo Estriado/fisiología , Interneuronas/fisiología , Tálamo/fisiología , Potenciales de Acción/fisiología , Aminoácidos/metabolismo , Animales , Animales Recién Nacidos , Colina O-Acetiltransferasa/metabolismo , Cocaína/farmacología , Cuerpo Estriado/citología , Antagonistas de Dopamina/farmacología , Inhibidores de Captación de Dopamina/farmacología , Estimulación Eléctrica/métodos , Potenciales Postsinápticos Excitadores/fisiología , Proteínas Fluorescentes Verdes/genética , Técnicas In Vitro , Mecamilamina/farmacología , Ratones , Ratones Transgénicos , Modelos Biológicos , Vías Nerviosas/fisiología , Antagonistas Nicotínicos/farmacología , Técnicas de Placa-Clamp , Receptores de Dopamina D1/genética , Receptores de Dopamina D2/genética , Sulpirida/farmacología , Transmisión Sináptica/efectos de los fármacos , Factores de Tiempo
6.
Cell ; 135(4): 738-48, 2008 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-19013281

RESUMEN

The cellular heterogeneity of the brain confounds efforts to elucidate the biological properties of distinct neuronal populations. Using bacterial artificial chromosome (BAC) transgenic mice that express EGFP-tagged ribosomal protein L10a in defined cell populations, we have developed a methodology for affinity purification of polysomal mRNAs from genetically defined cell populations in the brain. The utility of this approach is illustrated by the comparative analysis of four types of neurons, revealing hundreds of genes that distinguish these four cell populations. We find that even two morphologically indistinguishable, intermixed subclasses of medium spiny neurons display vastly different translational profiles and present examples of the physiological significance of such differences. This genetically targeted translating ribosome affinity purification (TRAP) methodology is a generalizable method useful for the identification of molecular changes in any genetically defined cell type in response to genetic alterations, disease, or pharmacological perturbations.


Asunto(s)
Encéfalo/metabolismo , Técnicas Genéticas , Biosíntesis de Proteínas , Animales , Sistema Nervioso Central/metabolismo , Cromosomas Artificiales Bacterianos/metabolismo , Cocaína/farmacología , Inhibidores de Captación de Dopamina/farmacología , Proteínas Fluorescentes Verdes/metabolismo , Inmunohistoquímica/métodos , Ratones , Ratones Transgénicos , Modelos Biológicos , Neuronas/metabolismo , Ribosomas/metabolismo
7.
J Neurosci ; 28(25): 6483-92, 2008 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-18562619

RESUMEN

The two principal excitatory glutamatergic inputs to striatal medium spiny neurons (MSNs) arise from neurons in the cerebral cortex and thalamus. Although there have been many electrophysiological studies of MSN glutamatergic synapses, little is known about how corticostriatal and thalamostriatal synapses differ. Using mouse brain slices that allowed each type of synapse to be selectively activated, electrophysiological approaches were used to characterize their properties in identified striatopallidal and striatonigral MSNs. At corticostriatal synapses, a single afferent volley increased the glutamate released by a subsequent volley, leading to enhanced postsynaptic depolarization with repetitive stimulation. This was true for both striatonigral and striatopallidal MSNs. In contrast, at thalamostriatal synapses, a single afferent volley decreased glutamate released by a subsequent volley, leading to a depressed postsynaptic depolarization with repetitive stimulation. Again, this response pattern was the same in striatonigral and striatopallidal MSNs. These differences in release probability and short-term synaptic plasticity suggest that corticostriatal and thalamostriatal projection systems code information in temporally distinct ways, constraining how they regulate striatal circuitry.


Asunto(s)
Corteza Cerebral/fisiología , Cuerpo Estriado/fisiología , Sinapsis/fisiología , Tálamo/fisiología , Animales , Técnicas In Vitro , Ratones , Transmisión Sináptica/fisiología
8.
J Neurosci ; 26(12): 3164-8, 2006 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-16554467

RESUMEN

Adaptations in dopamine (DA) transmission in the prefrontal cortex (PFC) are thought to be critical to the development and persistence of drug addiction. Our previous findings showed that medial PFC (mPFC) neurons in rats treated repeatedly with amphetamine exhibit a decreased inhibitory response to iontophoretically applied DA, demonstrating altered DA receptor transmission. To determine the role postsynaptic DA D1 receptors play in this effect, we used whole-cell patch-clamp recordings of acutely dissociated pyramidal mPFC neurons and inhibition of transient voltage-sensitive sodium current (INaT) as a measure of D1 receptor function. After 3 d of withdrawal, neurons recorded from amphetamine-treated rats (5 mg/kg for 5 d) demonstrated a significant decrease in whole-cell INaT density and in the ability of D1 receptor stimulation to inhibit INaT. Application of a protein kinase A (PKA) inhibitor blocked the ability of D1 receptor activation to inhibit INaT and increased the current density of both groups to similar values. These results suggest that repeated amphetamine exposure results in subsensitivity of the INaT to D1 receptor-mediated inhibition because of a possible increase in basal PKA activity. This adaptation may contribute to perseverative behaviors in animals that self-administer psychostimulants as well as compromised PFC-dependent behaviors in human addicts.


Asunto(s)
Anfetamina/efectos adversos , Inhibición Neural/efectos de los fármacos , Neuronas/efectos de los fármacos , Corteza Prefrontal/efectos de los fármacos , Receptores de Dopamina D1/efectos de los fármacos , Canales de Sodio/efectos de los fármacos , Anfetamina/administración & dosificación , Trastornos Relacionados con Anfetaminas/metabolismo , Trastornos Relacionados con Anfetaminas/fisiopatología , Animales , Proteínas Quinasas Dependientes de AMP Cíclico/antagonistas & inhibidores , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Modelos Animales de Enfermedad , Inhibidores de Captación de Dopamina/administración & dosificación , Inhibidores de Captación de Dopamina/efectos adversos , Esquema de Medicación , Inhibidores Enzimáticos/farmacología , Masculino , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/fisiología , Inhibición Neural/fisiología , Neuronas/metabolismo , Técnicas de Cultivo de Órganos , Técnicas de Placa-Clamp , Corteza Prefrontal/metabolismo , Corteza Prefrontal/fisiopatología , Células Piramidales/efectos de los fármacos , Células Piramidales/metabolismo , Ratas , Ratas Sprague-Dawley , Receptores de Dopamina D1/metabolismo , Canales de Sodio/metabolismo , Síndrome de Abstinencia a Sustancias/metabolismo , Síndrome de Abstinencia a Sustancias/fisiopatología
9.
Behav Brain Res ; 143(1): 101-8, 2003 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-12842301

RESUMEN

Repeated administration of psychomotor stimulants may produce an impulsive state that could contribute to the cycle of drug abstinence and relapse seen in human drug addicts. We have previously reported that the inhibitory effects of dopamine (DA) on the firing rate of medial prefrontal cortex (mPFC) neurons were reduced in rats after repeated amphetamine treatment suggesting impaired mPFC DA function. Here, we used a differential reinforcement of low rates of responding (DRL) operant conditioning task, which is dependent on mPFC DA, to test impulsivity and inhibitory control. Food-restricted rats were trained to inhibit a nose poke response for 30s before a subsequent nose poke would result in a food reward (DRL 30). Once training was completed, rats received 5 days of no treatment, daily i.p. saline injections or daily i.p. injections of 5mg/kg amphetamine. Nine days of DRL 30 test performance began following a 3-day withdrawal from treatment. The percent of training active hole nose pokes was significantly increased and the percent of training efficiency was significantly decreased in rats withdrawn from repeated amphetamine administration as compared to saline or nai;ve rats. This suggests that impulsivity is increased during amphetamine withdrawal, which we hypothesize is associated with disrupted DA function in the mPFC.


Asunto(s)
Condicionamiento Operante/efectos de los fármacos , Dextroanfetamina/farmacología , Desempeño Psicomotor/efectos de los fármacos , Síndrome de Abstinencia a Sustancias/fisiopatología , Animales , Estimulantes del Sistema Nervioso Central/farmacología , Modelos Animales de Enfermedad , Dopamina/metabolismo , Conducta Impulsiva/fisiopatología , Masculino , Corteza Prefrontal/efectos de los fármacos , Corteza Prefrontal/metabolismo , Ratas , Ratas Sprague-Dawley , Esquema de Refuerzo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA