Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Biochem Pharmacol ; 229: 116474, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39122218

RESUMEN

This study investigated the efficacy of a new chrysin-loaded calixarene-cyclodextrin ternary drug delivery system (DDS) in reversing liver fibrosis in a mouse model of chronic diabetes. The system was designed to enhance the solubility and bioavailability of chrysin (CHR) and calixarene 0118 (OTX008). Adult male CD1 mice received streptozotocin (STZ) injections to induce diabetes. After 20 weeks, they underwent intraperitoneal treatments twice weekly for a two-week period. Histological analyses revealed that long-term hyperglycaemia increased liver fibrosis and altered hepatic ultrastructure, characterized by lipid accumulation, hepatic stellate cell activation, and collagen deposition. The treatment with the chrysin-loaded DDS restored liver structure closely to normal levels, as opposed to the minimal impact observed with sulfobutylated ß-cyclodextrin (SBECD) alone. The treatment significantly decreased serum activities of alanine /aspartate transaminases and reduced the gene expression of collagen type I (Col-I). It also modulated the transforming growth factor beta 1 (TGF-ß1)/Smad signalling pathway, inhibiting the activation and proliferation of hepatic stellate cells. The treatment led to a downregulation of the TGF-ß1 gene and its receptors TGFßR1 and TGFßR2, together with a decrease in Smad 2 and 3 mRNA levels. Conversely, Smad 7 mRNA expression was increased by the DDS. Furthermore, it downregulated galectin-1 (Gal-1) gene and protein levels, which correlated with fibrotic markers. In conclusion, the chrysin-loaded calixarene-cyclodextrin ternary DDS presents a promising therapeutic approach for diabetic liver fibrosis, effectively targeting fibrotic pathways and restoring hepatic function and structure.

2.
Biomedicines ; 11(6)2023 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-37371866

RESUMEN

In this study, we aimed to explore the hepatoprotective effects of the gemmotherapy bud extract of Corylus avellana in a model of liver fibrosis on diabetic mice. An evaluation of total flavonoids and polyphenols contents and LC/MS analyses were performed. Experimental fibrosis was induced with CCl4 (2 mL/kg by i.p. injections twice a week for 7 weeks) in streptozotocin-induced diabetic mice. Our results showed a content of 6-7% flavonoids, while hyperoside and chlorogenic acids were highlighted in the bud extract. Toxic administration of CCl4 increased oxidative stress, mRNA expression of the transforming growth factor-ß1 (TGF-ß1) and Smad 2/3, and reduced Smad 7 expression. Furthermore, up-regulation of α-smooth muscle actin (α-SMA) revealed an activation of hepatic stellate cells (HSCs), while collagen I (Col I) up-regulation and matrix metalloproteinases (MMPs) unbalance led to an altered extracellular matrix enriched in collagen, confirmed as well by a trichrome stain and electron microscopy analysis. Treatment with gemmotherapy extract significantly restored the liver architecture and the antioxidant balance, and significantly decreased collagen deposits in the liver and improved the liver function. Our results suggest that Corylus avellana gemmotherapy extract may have anti-fibrotic effects and could be useful in the prevention and treatment of liver fibrosis. The hepatoprotective mechanism is based on HSC inhibition, a reduction in oxidative stress and liver damage, a downregulation of the TGF-ß1/Smad signaling pathway and a MMPs/TIMP rebalance.

3.
Cells ; 11(21)2022 10 22.
Artículo en Inglés | MEDLINE | ID: mdl-36359733

RESUMEN

Liver fibrosis can develop on the background of hyperglycemia in diabetes mellitus. However, xenobiotic-related factors may accelerate diabetes-associated liver fibrosis. In this study, we aimed to assess the antfibrotic effect of ADSC and HGF therapy and to establish the cellular and molecular mechanisms through in vitro and in vivo experiments. In vitro, TGF-ß1-activated hepatic stellate cells (HSCs) were cocultured with ADSCs or HGF, and the expression of several fibrosis markers was investigated. The antifibrotic effect of the ADSCs, HGF, and ADSCs supplemented with HGF was further assessed in vivo on diabetic mice with liver fibrosis experimentally induced. In vitro results showed the inhibition of HSC proliferation and decrease in fibrogenesis markers. Coadministration of ADSCs and HGF on diabetic mice with liver fibrosis enhanced antifibrotic effects confirmed by the downregulation of Col I, α-SMA, TGF-ß1, and Smad2, while Smad7 was upregulated. Moreover, stem cell therapy supplemented with HGF considerably attenuated inflammation and microvesicular steatosis, decreased collagen deposits, and alleviated liver fibrosis. In conclusion, the HGF-based ADSC therapy might be of interest for the treatment of liver fibrosis in diabetic patients, consecutive aggression exerts by different environmental factors.


Asunto(s)
Diabetes Mellitus Experimental , Células Estrelladas Hepáticas , Cirrosis Hepática , Animales , Ratones , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/terapia , Diabetes Mellitus Experimental/metabolismo , Células Estrelladas Hepáticas/metabolismo , Factor de Crecimiento de Hepatocito/metabolismo , Factor de Crecimiento de Hepatocito/farmacología , Cirrosis Hepática/inducido químicamente , Cirrosis Hepática/terapia , Cirrosis Hepática/metabolismo , Transducción de Señal , Proteínas Smad/metabolismo , Células Madre/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Células Madre Mesenquimatosas
4.
J Cell Mol Med ; 26(1): 25-34, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34904376

RESUMEN

Transmission electron microscopy has historically been indispensable for virology research, as it offers unique insight into virus function. In the past decade, as cryo-electron microscopy (cryo-EM) has matured and become more accessible, we have been able to peer into the structure of viruses at the atomic level and understand how they interact with the host cell, with drugs or with antibodies. Perhaps, there was no time in recent history where cryo-EM was more needed, as SARS-CoV-2 has spread around the globe, causing millions of deaths and almost unquantifiable economic devastation. In this concise review, we aim to mark the most important contributions of cryo-EM to understanding the structure and function of SARS-CoV-2 proteins, from surface spikes to the virus core and from virus-receptor interactions to antibody binding.


Asunto(s)
Enzima Convertidora de Angiotensina 2/química , Anticuerpos Antivirales/química , Vacunas contra la COVID-19/química , COVID-19/prevención & control , Receptores Virales/química , Glicoproteína de la Espiga del Coronavirus/química , Enzima Convertidora de Angiotensina 2/inmunología , Enzima Convertidora de Angiotensina 2/metabolismo , Anticuerpos Antivirales/biosíntesis , COVID-19/inmunología , COVID-19/virología , Vacunas contra la COVID-19/administración & dosificación , Vacunas contra la COVID-19/biosíntesis , Microscopía por Crioelectrón , Epítopos/química , Epítopos/inmunología , Epítopos/metabolismo , Humanos , Modelos Moleculares , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Estructura Secundaria de Proteína , Receptores Virales/inmunología , Receptores Virales/metabolismo , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/patogenicidad , SARS-CoV-2/ultraestructura , Serina Endopeptidasas/química , Serina Endopeptidasas/inmunología , Serina Endopeptidasas/metabolismo , Glicoproteína de la Espiga del Coronavirus/inmunología , Glicoproteína de la Espiga del Coronavirus/metabolismo , Virión/efectos de los fármacos , Virión/patogenicidad , Virión/ultraestructura
5.
Int J Mol Sci ; 22(12)2021 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-34208040

RESUMEN

(1) Background: The pro-resolving lipid mediator Resolvin D1 (RvD1) has already shown protective effects in animal models of diabetic retinopathy. This study aimed to investigate the retinal levels of RvD1 in aged (24 months) and younger (3 months) Balb/c mice, along with the activation of macro- and microglia, apoptosis, and neuroinflammation. (2) Methods: Retinas from male and female mice were used for immunohistochemistry, immunofluorescence, transmission electron microscopy, Western blotting, and enzyme-linked immunosorbent assays. (3) Results: Endogenous retinal levels of RvD1 were reduced in aged mice. While RvD1 levels were similar in younger males and females, they were markedly decreased in aged males but less reduced in aged females. Both aged males and females showed a significant increase in retinal microglia activation compared to younger mice, with a more marked reactivity in aged males than in aged females. The same trend was shown by astrocyte activation, neuroinflammation, apoptosis, and nitrosative stress, in line with the microglia and Müller cell hypertrophy evidenced in aged retinas by electron microscopy. (4) Conclusions: Aged mice had sex-related differences in neuroinflammation and apoptosis and low retinal levels of endogenous RvD1.


Asunto(s)
Envejecimiento/patología , Ácidos Docosahexaenoicos/farmacología , Inflamación/patología , Retina/patología , Caracteres Sexuales , Animales , Apoptosis/efectos de los fármacos , Biomarcadores/metabolismo , Caspasa 3/metabolismo , Células Ependimogliales/efectos de los fármacos , Células Ependimogliales/metabolismo , Células Ependimogliales/patología , Células Ependimogliales/ultraestructura , Femenino , Masculino , Ratones Endogámicos BALB C , Microglía/efectos de los fármacos , Microglía/metabolismo , Microglía/patología , Microglía/ultraestructura , FN-kappa B/metabolismo , Retina/efectos de los fármacos , Factor de Necrosis Tumoral alfa/metabolismo , Tirosina/análogos & derivados , Tirosina/metabolismo
7.
Front Pharmacol ; 11: 593514, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33519453

RESUMEN

Age and gender are two important factors that may influence the function and structure of the retina and its susceptibility to retinal diseases. The aim of this study was to delineate the influence that biological sex and age exert on the retinal structural and ultrastructural changes in mice and to identify the age-related miRNA dysregulation profiles in the retina by gender. Experiments were undertaken on male and female Balb/c aged 24 months (approximately 75-85 years in humans) compared to the control (3 months). The retinas were analyzed by histology, transmission electron microscopy, and age-related miRNA expression profile analysis. Retinas of both sexes showed a steady decline in retinal thickness as follows: photoreceptor (PS) and outer layers (p < 0.01 for the aged male vs. control; p < 0.05 for the aged female vs. control); the inner retinal layers were significantly affected by the aging process in the males (p < 0.01) but not in the aged females. Electron microscopy revealed more abnormalities which involve the retinal pigment epithelium (RPE) and Bruch's membrane, outer and inner layers, vascular changes, deposits of amorphous materials, and accumulation of lipids or lipofuscins. Age-related miRNAs, miR-27a-3p (p < 0.01), miR-27b-3p (p < 0.05), and miR-20a-5p (p < 0.05) were significantly up-regulated in aged male mice compared to the controls, whereas miR-20b-5p was significantly down-regulated in aged male (p < 0.05) and female mice (p < 0.05) compared to the respective controls. miR-27a-3p (5.00 fold; p < 0.01) and miR-27b (7.58 fold; p < 0.01) were significantly up-regulated in aged male mice vs. aged female mice, whereas miR-20b-5p (-2.10 fold; p < 0.05) was significantly down-regulated in aged male mice vs. aged female mice. Interestingly, miR-27a-3p, miR-27b-3p, miR-20a-5p, and miR-20b-5p expressions significantly correlated with the thickness of the retinal PS layer (p < 0.01), retinal outer layers (p < 0.01), and Bruch's membrane (p < 0.01). Our results showed that biological sex can influence the structure and function of the retina upon aging, suggesting that this difference may be underlined by the dysregulation of age-related mi-RNAs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA