Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS One ; 16(8): e0255606, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34388149

RESUMEN

Hematopoietic stem cell (HSC) trafficking is regulated by a number of complex mechanisms. Among them are the transmembrane protein Robo4 and the vascular cell adhesion molecule, VCAM1. Endothelial VCAM1 is a well-known regulator of hematopoietic cell trafficking, and our previous studies revealed that germline deletion of Robo4 led to impaired HSC trafficking, with an increase in vascular endothelial cell (VEC) numbers and downregulation of VCAM1 protein on sinusoidal VECs. Here, we utilized two Robo4 conditional deletion models in parallel with Robo4 germline knockout mice (R4KO) to evaluate the effects of acute and endothelial cell-specific Robo4 deletion on HSC trafficking. Strikingly similar to the R4KO, the acute deletion of Robo4 resulted in altered HSC distribution between the bone marrow and blood compartments, despite normal numbers of VECs and wild-type levels of VCAM1 cell surface protein on sinusoidal VECs. Additionally, consistent with the R4KO mice, acute loss of Robo4 in the host perturbed long-term engraftment of donor wild-type HSCs and improved HSC mobilization to the peripheral blood. These data demonstrate the significant role that endothelial Robo4 plays in directional HSC trafficking, independent of alterations in VEC numbers and VCAM1 expression.


Asunto(s)
Células Endoteliales/metabolismo , Movilización de Célula Madre Hematopoyética/estadística & datos numéricos , Células Madre Hematopoyéticas/citología , Receptores de Superficie Celular/fisiología , Nicho de Células Madre , Molécula 1 de Adhesión Celular Vascular/metabolismo , Animales , Ratones , Ratones Noqueados , Molécula 1 de Adhesión Celular Vascular/genética
2.
Sci Rep ; 10(1): 11007, 2020 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-32620908

RESUMEN

Brain-on-a-chip systems are designed to simulate brain activity using traditional in vitro cell culture on an engineered platform. It is a noninvasive tool to screen new drugs, evaluate toxicants, and elucidate disease mechanisms. However, successful recapitulation of brain function on these systems is dependent on the complexity of the cell culture. In this study, we increased cellular complexity of traditional (simple) neuronal cultures by co-culturing with astrocytes and oligodendrocyte precursor cells (complex culture). We evaluated and compared neuronal activity (e.g., network formation and maturation), cellular composition in long-term culture, and the transcriptome of the two cultures. Compared to simple cultures, neurons from complex co-cultures exhibited earlier synapse and network development and maturation, which was supported by localized synaptophysin expression, up-regulation of genes involved in mature neuronal processes, and synchronized neural network activity. Also, mature oligodendrocytes and reactive astrocytes were only detected in complex cultures upon transcriptomic analysis of age-matched cultures. Functionally, the GABA antagonist bicuculline had a greater influence on bursting activity in complex versus simple cultures. Collectively, the cellular complexity of brain-on-a-chip systems intrinsically develops cell type-specific phenotypes relevant to the brain while accelerating the maturation of neuronal networks, important features underdeveloped in traditional cultures.


Asunto(s)
Astrocitos/citología , Técnicas de Cocultivo/métodos , Perfilación de la Expresión Génica/métodos , Oligodendroglía/citología , Animales , Astrocitos/química , Células Cultivadas , Redes Reguladoras de Genes , Dispositivos Laboratorio en un Chip , Neurogénesis , Oligodendroglía/química , Ratas , Análisis de Secuencia de ARN , Análisis de la Célula Individual , Sinaptofisina/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA