Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-486695

RESUMEN

Omicron is the evolutionarily most distinct SARS-CoV-2 variant (VOC) to date and displays multiple amino acid alterations located in neutralizing antibody sites of the spike (S) protein. We report here that Omicron breakthrough infection in BNT162b2 vaccinated individuals results in strong neutralizing activity not only against Omicron, but also broadly against previous SARS-CoV-2 VOCs and against SARS-CoV-1. We found that Omicron breakthrough infection mediates a robust B cell recall response, and primarily expands preformed memory B cells that recognize epitopes shared broadly by different variants, rather than inducing new B cells against strictly Omicron-specific epitopes. Our data suggest that, despite imprinting of the immune response by previous vaccination, the preformed B cell memory pool has sufficient plasticity for being refocused and quantitatively remodeled by exposure to heterologous S protein, thus allowing effective neutralization of variants that evade a previously established neutralizing antibody response. One Sentence SummaryBreakthrough infection in individuals double- and triple-vaccinated with BNT162b2 drives cross-variant neutralization and memory B cell formation.

2.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-421008

RESUMEN

A safe and effective vaccine against COVID-19 is urgently needed in quantities sufficient to immunise large populations. We report the preclinical development of two BNT162b vaccine candidates, which contain lipid-nanoparticle (LNP) formulated nucleoside-modified mRNA encoding SARS-CoV-2 spike glycoprotein-derived immunogens. BNT162b1 encodes a soluble, secreted, trimerised receptor-binding domain (RBD-foldon). BNT162b2 encodes the full-length transmembrane spike glycoprotein, locked in its prefusion conformation (P2 S). The flexibly tethered RBDs of the RBD-foldon bind ACE2 with high avidity. Approximately 20% of the P 2S trimers are in the two-RBD down, one-RBD up state. In mice, one intramuscular dose of either candidate elicits a dose-dependent antibody response with high virus-entry inhibition titres and strong TH1 CD4+ and IFN{gamma}+ CD8+ T-cell responses. Prime/boost vaccination of rhesus macaques with BNT162b candidates elicits SARS-CoV-2 neutralising geometric mean titres 8.2 to 18.2 times that of a SARS-CoV-2 convalescent human serum panel. The vaccine candidates protect macaques from SARS-CoV-2 challenge, with BNT162b2 protecting the lower respiratory tract from the presence of viral RNA and with no evidence of disease enhancement. Both candidates are being evaluated in phase 1 trials in Germany and the United States. BNT162b2 is being evaluated in an ongoing global, pivotal Phase 2/3 trial (NCT04380701, NCT04368728).

3.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-280818

RESUMEN

To contain the coronavirus disease 2019 (COVID-19) pandemic, a safe and effective vaccine against the new severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is urgently needed in quantities sufficient to immunise large populations. In this study, we report the design, preclinical development, immunogenicity and anti-viral protective effect in rhesus macaques of the BNT162b2 vaccine candidate. BNT162b2 contains an LNP-formulated nucleoside-modified mRNA that encodes the spike glycoprotein captured in its prefusion conformation. After expression of the BNT162b2 coding sequence in cells, approximately 20% of the spike molecules are in the one-RBD up, two-RBD down state. Immunisation of mice with a single dose of BNT162b2 induced dose level-dependent increases in pseudovirus neutralisation titers. Prime-boost vaccination of rhesus macaques elicited authentic SARS-CoV-2 neutralising geometric mean titers 10.2 to 18.0 times that of a SARS-CoV-2 convalescent human serum panel. BNT162b2 generated strong TH1 type CD4+ and IFN{gamma}+ CD8+ T-cell responses in mice and rhesus macaques. The BNT162b2 vaccine candidate fully protected the lungs of immunised rhesus macaques from infectious SARS-CoV-2 challenge. BNT162b2 is currently being evaluated in a global, pivotal Phase 2/3 trial (NCT04368728).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA