Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Chemosphere ; 365: 143285, 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39243903

RESUMEN

This work highlights the biosurfactant production potential of yeasts from mangroves in northeastern Brazil. The biosurfactants were evaluated by their emulsifying capacity (EI24), with 6 isolates showing values between 50% and 62%. Surfactant properties from crude extract were measured using drop collapse, oil displacement, Parafilm® M, surface tension and critical micellar concentration tests. The effects of temperature, salinity, pH, and the ability to emulsify different hydrocarbons were analyzed, showing a promising potential of the yeast species investigated to tolerance to high temperatures and acidic pH, in addition to emulsifying different sources of hydrocarbons with environmental impact. It is important to note that the Pichia pseudolambica isolates showed a remarkable ability to reduce the surface tension of water, from 70.82 mN/m to 36.47 mN/m. In addition, the critical micellar concentration (CMC) values ranged from 7 to 16 mg/mL, highlighting the promising surfactant activity of these isolates for future applications. It was identified that the biosurfactant adhered to the yeast cell wall, and FTIR and 1H NMR spectroscopy analysis was carried out on the yeast biomass and its post-sonication supernatant. The results indicate the presence of characteristic functional groups and peaks found in biosurfactants of a glycolipid nature. Taking together the results reveals the promising potential of biosurfactant biosynthesis of P. pseudolambica yeast, a trait not reported in the literature so far for this species. P. pseudolambica presents a relevant metabolic potential for alternative substrate use and resilience to adverse conditions that could enable it to produce biosurfactants for the biotechnological remediation of areas contaminated by oil derivatives. The metabolic properties herein investigated, together with their presence in Brazilian mangroves, make P. pseudolambica an emerging candidate for developing industrial processes and sustainable strategies for the recovery of ecosystems impacted by oil spills, being positioned as a sustainable alternative to conventional surfactants.

2.
Chemosphere ; 355: 141807, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38552803

RESUMEN

The present study investigates the potential for biosurfactant production of 19 marine yeast species obtained from zoanthids. Using the emulsification index test to screen the samples produced by the marine yeasts, we verified that five isolates exhibited an emulsification index ≥50%. Additional tests were performed on such isolates, including oil displacement, drop collapse, Parafilm M assay, and surface tension measurement. The tolerance of produced biosurfactants for environmental conditions was also analyzed, especially considering the media's temperature, pH, and salinity. Moreover, the surfactant's ability to emulsify different hydrocarbon sources and to metabolize kerosene as the sole carbon source was evaluated in vitro. Our results demonstrate that yeast biosurfactants can emulsify hydrocarbon sources under different physicochemical conditions and metabolize kerosene as a carbon source. Considering the Yarrowia lipolytica LMS 24B as the yeast model for biosurfactant production from the cell's wall biomass, emulsification indexes of 61.2% were obtained, even at a high temperature of 120 °C. Furthermore, the Fourier-transform middle infrared spectroscopy (FTIR) analysis of the biosurfactant's chemical composition revealed the presence of distinct functional groups assigned to a glycoprotein complex. Considering the status of developing new bioproducts and bioprocesses nowadays, our findings bring a new perspective to biosurfactant production by marine yeasts, especially Y. lipolytica LMS 24B. In particular, the presented results validate the relevance of marine environments as valuable sources of genetic resources, i.e., yeast strains capable of metabolizing and emulsifying petroleum derivatives.


Asunto(s)
Petróleo , Yarrowia , Yarrowia/metabolismo , Tensoactivos/química , Queroseno , Petróleo/análisis , Hidrocarburos/metabolismo , Carbono/metabolismo , Biodegradación Ambiental
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA