Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS Biol ; 22(4): e3002582, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38683874

RESUMEN

Muscarinic acetylcholine receptors are prototypical G protein-coupled receptors (GPCRs), members of a large family of 7 transmembrane receptors mediating a wide variety of extracellular signals. We show here, in cultured cells and in a murine model, that the carboxyl terminal fragment of the muscarinic M2 receptor, comprising the transmembrane regions 6 and 7 (M2tail), is expressed by virtue of an internal ribosome entry site localized in the third intracellular loop. Single-cell imaging and import in isolated yeast mitochondria reveals that M2tail, whose expression is up-regulated in cells undergoing integrated stress response, does not follow the normal route to the plasma membrane, but is almost exclusively sorted to the mitochondria inner membrane: here, it controls oxygen consumption, cell proliferation, and the formation of reactive oxygen species (ROS) by reducing oxidative phosphorylation. Crispr/Cas9 editing of the key methionine where cap-independent translation begins in human-induced pluripotent stem cells (hiPSCs), reveals the physiological role of this process in influencing cell proliferation and oxygen consumption at the endogenous level. The expression of the C-terminal domain of a GPCR, capable of regulating mitochondrial function, constitutes a hitherto unknown mechanism notably unrelated to its canonical signaling function as a GPCR at the plasma membrane. This work thus highlights a potential novel mechanism that cells may use for controlling their metabolism under variable environmental conditions, notably as a negative regulator of cell respiration.


Asunto(s)
Respiración de la Célula , Mitocondrias , Receptor Muscarínico M2 , Animales , Humanos , Ratones , Proliferación Celular , Células HEK293 , Células Madre Pluripotentes Inducidas/metabolismo , Mitocondrias/metabolismo , Fosforilación Oxidativa , Consumo de Oxígeno , Especies Reactivas de Oxígeno/metabolismo , Receptor Muscarínico M2/metabolismo , Receptor Muscarínico M2/genética , Estrés Fisiológico
2.
Neuroscience ; 544: 104-116, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38244669

RESUMEN

Our recent study revealed that fluorescent lamp light can penetrate deep into the brain of mice and rats leading to the development of typical histological characteristics associated with Parkinson's disease such as the loss of dopamine neurons in the substantia nigra. Monochromatic LED lights were thus used in this work to deepen our knowledge on the effects of the major wavelength peaks of fluorescent light on mouse and human dopaminergic cells. In particular, we exposed immortalized dopaminergic MN9D neuronal cells, primary cultures of mouse mesencephalic dopaminergic cells and human dopaminergic neurons differentiated from induced pluripotent stem cells (hiPSC) to different LED light wavelengths. We found that chronic exposure to LED light reduced overall undifferentiated MN9D cell number, with the most significant effects observed at wavelengths of 485 nm and 610 nm. Moreover, LED light especially at 610 nm was able to negatively impact on the survival of mouse mesencephalic dopaminergic cells and of human dopaminergic neurons derived from hiPSC. Notably, differentiated MN9D dopaminergic cells, which closely resemble mature dopamine neuronal phenotype, acutely exposed for 3 h at 610 nm, showed a clear increase in ROS production and cytotoxicity compared to controls undifferentiated MN9D cells. These increases were even more pronounced by the co-treatment with the oxidative agent H2O2. Collectively, these findings suggest that specific wavelengths, particularly those capable of penetrating deep into the brain, could potentially pose an environmental hazard in relation to Parkinson's disease.


Asunto(s)
Neuronas Dopaminérgicas , Enfermedad de Parkinson , Humanos , Animales , Ratas , Enfermedad de Parkinson/patología , Peróxido de Hidrógeno/farmacología , Mesencéfalo , Sustancia Negra
3.
Biomolecules ; 13(10)2023 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-37892113

RESUMEN

Unstructured regions in functional proteins have gained attention in recent years due to advancements in informatics tools and biophysical methods. G protein-coupled receptors (GPCRs), a large family of cell surface receptors, contain unstructured regions in the form of the i3 loop and C-terminus. This review provides an overview of the functional significance of these regions in GPCRs. GPCRs transmit signals from the extracellular environment to the cell interior, regulating various physiological processes. The i3 loop, located between the fifth and sixth transmembrane helices, and the C-terminus, connected to the seventh transmembrane helix, are determinant of interactions with G proteins and with other intracellular partners such as arrestins. Recent studies demonstrate that the i3 loop and C-terminus play critical roles in allosterically regulating GPCR activation. They can act as autoregulators, adopting conformations that, by restricting G protein access, modulate receptor coupling specificity. The length and unstructured nature of the i3 loop and C-terminus provide unique advantages in GPCR interactions with intracellular protein partners. They act as "fishing lines", expanding the radius of interaction and enabling GPCRs to tether scaffolding proteins, thus facilitating receptor stability during cell membrane movements. Additionally, the i3 loop may be involved in domain swapping between GPCRs, generating novel receptor dimers with distinct binding and coupling characteristics. Overall, the i3 loop and C-terminus are now widely recognized as crucial elements in GPCR function and regulation. Understanding their functional roles enhances our comprehension of GPCR structure and signaling complexity and holds promise for advancements in receptor pharmacology and drug development.


Asunto(s)
Receptores Acoplados a Proteínas G , Transducción de Señal , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal/fisiología , Proteínas de Unión al GTP/metabolismo , Receptores de Superficie Celular/metabolismo , Membrana Celular/metabolismo
4.
Cancers (Basel) ; 14(22)2022 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-36428597

RESUMEN

The use of a higher dose per fraction to overcome the high radioresistance of prostate cancer cells has been unsuccessfully proposed. Herein, we present PC3 and DU-145, castration-resistant prostate cancer cell lines that survived a clinically used ultra-higher dose per fraction, namely, radioresistant PC3 and DU-145 cells (PC3RR and DU-145RR). Compared to PC3, PC3RR showed a higher level of aggressive behaviour, with enhanced clonogenic potential, DNA damage repair, migration ability and cancer stem cell features. Furthermore, compared to PC3, PC3RR more efficiently survived further radiation by increasing proliferation and down-regulating pro-apoptotic proteins. No significant changes of the above parameters were described in DU-145RR, suggesting that different prostate cancer cell lines that survive ultra-higher dose per fraction do not display the same grade of aggressive phenotype. Furthermore, both PC3RR and DU-145RR increased antioxidant enzymes and mesenchymal markers. Our data suggest that different molecular mechanisms could be potential targets for future treatments plans based on sequential strategies and synergistic effects of different modalities, possibly in a patient-tailored fashion. Moreover, PC3RR cells displayed an increase in specific markers involved in bone remodeling, indicating that radiotherapy selects a PC3 population capable of migrating to secondary metastatic sites. Finally, PC3RR cells showed a better sensitivity to Docetaxel as compared to native PC3 cells. This suggests that a subset of patients with castration-resistant metastatic disease could benefit from upfront Docetaxel treatment after the failure of radiotherapy.

5.
Biomolecules ; 12(10)2022 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-36291552

RESUMEN

The architecture of eukaryotic cells is defined by extensive membrane-delimited compartments, which entails separate metabolic processes that would otherwise interfere with each other, leading to functional differences between cells. G protein-coupled receptors (GPCRs) are the largest class of cell surface receptors, and their signal transduction is traditionally viewed as a chain of events initiated from the plasma membrane. Furthermore, their intracellular trafficking, internalization, and recycling were considered only to regulate receptor desensitization and cell surface expression. On the contrary, accumulating data strongly suggest that GPCRs also signal from intracellular compartments. GPCRs localize in the membranes of endosomes, nucleus, Golgi and endoplasmic reticulum apparatuses, mitochondria, and cell division compartments. Importantly, from these sites they have shown to orchestrate multiple signals that regulate different cell pathways. In this review, we summarize the current knowledge of this fascinating phenomenon, explaining how GPCRs reach the intracellular sites, are stimulated by the endogenous ligands, and their potential physiological/pathophysiological roles. Finally, we illustrate several mechanisms involved in the modulation of the compartmentalized GPCR signaling by drugs and endogenous ligands. Understanding how GPCR signaling compartmentalization is regulated will provide a unique opportunity to develop novel pharmaceutical approaches to target GPCRs and potentially lead the way towards new therapeutic approaches.


Asunto(s)
Descubrimiento de Drogas , Receptores Acoplados a Proteínas G , Ligandos , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Superficie Celular , Preparaciones Farmacéuticas
6.
Eur J Pharmacol ; 925: 175016, 2022 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-35545150

RESUMEN

(+)-4-Propyl-9-hydroxynaphthoxazine ((+)PHNO) is a high affinity, preferential dopamine D3 versus D2 agonist employed in view of its high specificity and excellent signal-to-noise ratio as a radiotracer for positron emission tomography (PET) imaging. Surprisingly, its profile at other classes of monoamine receptor remains undocumented. In addition to hD3 and hD2L receptors, (+)PHNO revealed high affinity at hD4.4 but not hD1 or hD5 receptors. It also revealed significant affinity for several other G protein-coupled monoaminergic receptors, in particular h5-HT1A and h5-HT7. (+)PHNO behaved as a full agonist at hD4.4 and h5-HT1A receptors with potencies comparable to its actions at hD3 and hD2L receptors, and with less potency at 5-HT7 receptors. In binding assays with membranes derived from cells co-expressing hD3 and hD2L receptors and labeled with [3H]Nemonapride or [3H]Spiperone, the proportion of high affinity binding sites recognized by (+)PHNO was higher than an equivalent mixture of membranes from cells expressing hD3or hD2L receptors, suggesting that (+)PHNO promotes formation of hD3-hD2L heterodimers. Further, in cells co-expressing hD3 and hD2L receptors, (+)PHNO showed higher efficacy for inhibiting forskolin stimulated adenylyl cyclase and inducing adenylyl cyclase super-sensitization than in cells transfected with only hD2L receptors. In conclusion, (+)PHNO is a potent agonist at hD4.4, h5-HT1A and h5-HT7 as well as hD3 and hD2L receptors, and it potently activates dopamine hD3-hD2L heterodimers. These interactions should be considered when interpreting PET studies with [11C](+)PHNO and may be relevant to its functional and potential clinical properties in Parkinson's disease and other disorders.


Asunto(s)
Dopamina , Receptores de Dopamina D2 , Adenilil Ciclasas , Dopamina/metabolismo , Agonistas de Dopamina/farmacología , Oxazinas , Tomografía de Emisión de Positrones/métodos , Receptores de Dopamina D2/metabolismo , Receptores de Dopamina D3/metabolismo
7.
Biomolecules ; 11(12)2021 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-34944469

RESUMEN

Information flow from a source to a receiver becomes informative when the recipient can process the signal into a meaningful form. Information exchange and interpretation is essential in biology and understanding how cells integrate signals from a variety of information-coding molecules into complex orchestrated responses is a major challenge for modern cell biology. In complex organisms, cell to cell communication occurs mostly through neurotransmitters and hormones, and receptors are responsible for signal recognition at the membrane level and information transduction inside the cell. The G protein-coupled receptors (GPCRs) are the largest family of membrane receptors, with nearly 800 genes coding for these proteins. The recognition that GPCRs may physically interact with each other has led to the hypothesis that their dimeric state can provide the framework for temporal coincidence in signaling pathways. Furthermore, the formation of GPCRs higher order oligomers provides the structural basis for organizing distinct cell compartments along the plasma membrane where confined increases in second messengers may be perceived and discriminated. Here, we summarize evidence that supports these conjectures, fostering new ideas about the physiological role played by receptor homo- and hetero-oligomerization in cell biology.


Asunto(s)
Comunicación Celular , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/metabolismo , Animales , Compartimento Celular , Membrana Celular/metabolismo , Humanos , Multimerización de Proteína , Sistemas de Mensajero Secundario , Transducción de Señal
8.
Int J Mol Sci ; 22(19)2021 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-34639012

RESUMEN

Rhabdomyosarcoma (RMS) is the most common soft tissue sarcoma of childhood. About 25% of RMS expresses fusion oncoproteins such as PAX3/PAX7-FOXO1 (fusion-positive, FP) while fusion-negative (FN)-RMS harbors RAS mutations. Radiotherapy (RT) plays a crucial role in local control but metastatic RMS is often radio-resistant. HDAC inhibitors (HDACi) radio-sensitize different cancer cells types. Thus, we evaluated MS-275 (Entinostat), a Class I and IV HDACi, in combination with RT on RMS cells in vitro and in vivo. MS-275 reversibly hampered cell survival in vitro in FN-RMS RD (RASmut) and irreversibly in FP-RMS RH30 cell lines down-regulating cyclin A, B, and D1, up-regulating p21 and p27 and reducing ERKs activity, and c-Myc expression in RD and PI3K/Akt/mTOR activity and N-Myc expression in RH30 cells. Further, MS-275 and RT combination reduced colony formation ability of RH30 cells. In both cell lines, co-treatment increased DNA damage repair inhibition and reactive oxygen species formation, down-regulated NRF2, SOD, CAT and GPx4 anti-oxidant genes and improved RT ability to induce G2 growth arrest. MS-275 inhibited in vivo growth of RH30 cells and completely prevented the growth of RT-unresponsive RH30 xenografts when combined with radiation. Thus, MS-275 could be considered as a radio-sensitizing agent for the treatment of intrinsically radio-resistant PAX3-FOXO1 RMS.


Asunto(s)
Benzamidas/farmacología , Proteínas de Fusión Oncogénica/genética , Factores de Transcripción Paired Box/genética , Piridinas/farmacología , Tolerancia a Radiación/efectos de los fármacos , Tolerancia a Radiación/genética , Fármacos Sensibilizantes a Radiaciones/farmacología , Rabdomiosarcoma/genética , Animales , Apoptosis/efectos de los fármacos , Puntos de Control del Ciclo Celular/efectos de los fármacos , Puntos de Control del Ciclo Celular/efectos de la radiación , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Daño del ADN/efectos de los fármacos , Reparación del ADN/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Ratones , Rabdomiosarcoma/metabolismo , Rabdomiosarcoma/radioterapia
9.
Int J Radiat Biol ; 97(7): 943-957, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33979259

RESUMEN

PURPOSE: Herein we describe the in vitro and in vivo activity of FK228 (Romidepsin), an inhibitor of class I HDACs, in counteracting and radiosensitizing embryonal (ERMS, fusion-negative) and alveolar (ARMS, fusion-positive) rhabdomyosarcoma (RMS). METHODS: RH30 (ARMS, fusion-positive) and RD (ERMS, fusion-negative) cell lines and human multipotent mesenchymal stromal cells (HMSC) were used. Flow cytometry analysis, RT-qPCR, western blotting and enzymatic assays were performed. Irradiation was delivered by using an x-6 MV photon linear accelerator. FK228 (1.2 mg/kg) in vivo activity, combined or not with radiation therapy (2 Gy), was assessed in murine xenografts. RESULTS: Compared to HMSC, RMS expressed low levels of class I HDACs. In vitro, FK228, as single agents, reversibly downregulated class I HDACs expression and activity and induced oxidative stress, DNA damage and a concomitant growth arrest associated with PARP-1-mediated transient non-apoptotic cell death. Surviving cells upregulated the expression of cyclin A, B, D1, p27, Myc and activated PI3K/Akt/mTOR and MAPK signaling, known to be differently involved in cancer chemoresistance. Interestingly, while no radiosensitizing effects were detected, in vitro or in vivo, on RD cells, FK228 markedly radiosensitized RH30 cells by impairing antioxidant and DSBs repair pathways in vitro. Further, FK228 when combined with RT in vivo significantly reduced tumor mass in mouse RH30 xenografts. CONCLUSION: FK228 did not show antitumor activity as a single agent whilst its combination with RT resulted in radiosensitization of fusion-positive RMS cells, thus representing a possible strategy for the treatment of the most aggressive RMS subtype.


Asunto(s)
Transformación Celular Neoplásica , Depsipéptidos/farmacología , Fenotipo , Fármacos Sensibilizantes a Radiaciones/farmacología , Rabdomiosarcoma/patología , Animales , Apoptosis/efectos de la radiación , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/efectos de la radiación , Línea Celular Tumoral , Humanos , Ratones
10.
Pharmaceuticals (Basel) ; 13(11)2020 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-33202534

RESUMEN

Schizophrenia was first described by Emil Krapelin in the 19th century as one of the major mental illnesses causing disability worldwide. Since the introduction of chlorpromazine in 1952, strategies aimed at modifying the activity of dopamine receptors have played a major role for the treatment of schizophrenia. The introduction of atypical antipsychotics with clozapine broadened the range of potential targets for the treatment of this psychiatric disease, as they also modify the activity of the serotoninergic receptors. Interestingly, all marketed drugs for schizophrenia bind to the orthosteric binding pocket of the receptor as competitive antagonists or partial agonists. In recent years, a strong effort to develop allosteric modulators as potential therapeutic agents for schizophrenia was made, mainly for the several advantages in their use. In particular, the allosteric binding sites are topographically distinct from the orthosteric pockets, and thus drugs targeting these sites have a higher degree of receptor subunit specificity. Moreover, "pure" allosteric modulators maintain the temporal and spatial fidelity of native orthosteric ligand. Furthermore, allosteric modulators have a "ceiling effect", and their modulatory effect is saturated above certain concentrations. In this review, we summarize the progresses made in the identification of allosteric drugs for dopamine and serotonin receptors, which could lead to a new generation of atypical antipsychotics with a better profile, especially in terms of reduced side effects.

11.
J Biomed Sci ; 27(1): 90, 2020 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-32854690

RESUMEN

BACKGROUND: The probability of local tumor control after radiotherapy (RT) remains still miserably poor in pediatric rhabdomyosarcoma (RMS). Thus, understanding the molecular mechanisms responsible of tumor relapse is essential to identify personalized RT-based strategies. Contrary to what has been done so far, a correct characterization of cellular radioresistance should be performed comparing radioresistant and radiosensitive cells with the same isogenic background. METHODS: Clinically relevant radioresistant (RR) embryonal (RD) and alveolar (RH30) RMS cell lines have been developed by irradiating them with clinical-like hypo-fractionated schedule. RMS-RR cells were compared to parental isogenic counterpart (RMS-PR) and studied following the radiobiological concept of the "6Rs", which stand for repair, redistribution, repopulation, reoxygenation, intrinsic radioresistance and radio-immuno-biology. RESULTS: RMS-RR cell lines, characterized by a more aggressive and in vitro pro-metastatic phenotype, showed a higher ability to i) detoxify from reactive oxygen species; ii) repair DNA damage by differently activating non-homologous end joining and homologous recombination pathways; iii) counteract RT-induced G2/M cell cycle arrest by re-starting growth and repopulating after irradiation; iv) express cancer stem-like profile. Bioinformatic analyses, performed to assess the role of 41 cytokines after RT exposure and their network interactions, suggested TGF-ß, MIF, CCL2, CXCL5, CXCL8 and CXCL12 as master regulators of cancer immune escape in RMS tumors. CONCLUSIONS: These results suggest that RMS could sustain intrinsic and acquire radioresistance by different mechanisms and indicate potential targets for future combined radiosensitizing strategies.


Asunto(s)
Línea Celular Tumoral/efectos de la radiación , Tolerancia a Radiación , Rabdomiosarcoma Alveolar/radioterapia , Rabdomiosarcoma Embrionario/radioterapia , Humanos
12.
Neuroscience ; 432: 216-228, 2020 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-32142863

RESUMEN

Growing awareness of adverse impacts of artificial light on human health has led to recognize light pollution as a significant global environmental issue. Despite, a large number of studies in rodent and monkey models of Parkinson's disease have reported that near infrared light has neuroprotective effects on dopaminergic neurons, recent findings have shown that prolonged exposure of rodents and birds to fluorescent artificial light results in an increase of neuromelanin granules in substantia nigra and loss of dopaminergic neurons. The observed detrimental effect seems to be dependent on a direct effect of light on the substantia nigra rather than a secondary effect of the alterations of circadian rhythms. Moreover, inferences from animal models to human studies have shown a positive correlation between the prevalence of Parkinson's disease and light pollution. The present article discusses experimental evidence supporting a potentially deleterious impact of light on dopaminergic neurons and highlights the mechanisms whereby light might damage neuronal tissue. Moreover, it analyses epidemiological evidence that suggests light pollution to be an environmental risk factor for Parkinson's disease.


Asunto(s)
Fármacos Neuroprotectores , Enfermedad de Parkinson , Animales , Ritmo Circadiano , Neuronas Dopaminérgicas , Sustancia Negra
13.
J Oncol ; 2020: 9342732, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32184826

RESUMEN

Erythropoietin-producing hepatocellular receptors (Eph) promote the onset and sustain the progression of cancers such as colorectal cancer (CRC), in which the A2 subtype of Eph receptor expression has been shown to correlate with a poor prognosis and has been identified as a promising therapeutic target. Herein, we investigated, in vitro and in vivo, the effects of treatment with GLPG1790, a potent pan-Eph inhibitor. The small molecule has selective activity against the EphA2 isoform in human HCT116 and HCT15 CRC cell lines expressing a constitutively active form of RAS concurrently with a wild-type or mutant form of p53, respectively. GLPG1790 reduced EPHA2 phosphorylation/activation and induced G1/S cell-cycle growth arrest by downregulating the expression of cyclin E and PCNA, while upregulating p21Waf1/Cip1 and p27Cip/Kip. The inhibition of ephrin signaling induced quiescence in HCT15 and senescence in HCT116 cells. While investigating the role of CRC-related, pro-oncogenic p53 and RAS pathways, we found that GLPG1790 upregulated p53 expression and that silencing p53 or inhibiting RAS (human rat sarcoma)/ERKs (extracellular signal-regulated kinase) signaling restrained the ability of GLPG1790 to induce senescence in HCT116 cells. On the other hand, HCT15 silencing of p53 predisposed cells to GLPG1790-induced senescence, whilst no effects of ERK inhibition were observed. Finally, GLPG1790 hindered the epithelial-mesenchymal transition, reduced the migratory capacities of CRC, and affected tumor formation in xenograft models in vivo more efficiently using HCT116 than HCT15 for xenografts. Taken together, our data suggest the therapeutic potential of GLPG1790 as a signal transduction-based therapeutic strategy in to treat CRC.

14.
Int J Radiat Biol ; 96(6): 823-835, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32149569

RESUMEN

Purpose: Radiation therapy (RT), by using ionizing radiation (IR), destroys cancer cells inducing DNA damage. Despite several studies are continuously performed to identify the best curative dose of IR, the role of dose-rate, IR delivered per unit of time, on tumor control is still largely unknown.Materials and methods: Rhabdomyosarcoma (RMS) and prostate cancer (PCa) cell lines were irradiated with 2 or 10 Gy delivered at dose-rates of 1.5, 2.5, 5.5 and 10.1 Gy/min. Cell-survival rate and cell cycle distribution were evaluated by clonogenic assays and flow cytometry, respectively. The production of reactive oxygen species (ROS) was detected by cytometry. Quantitative polymerase chain reaction assessed the expression of anti-oxidant-related factors including NRF2, SODs, CAT and GPx4 and miRNAs (miR-22, -126, -210, -375, -146a, -34a). Annexin V and caspase-8, -9 and -3 activity were assessed to characterize cell death. Senescence was determined by assessing ß-galactosidase (SA-ß-gal) activity. Immunoblotting was performed to assess the expression/activation of: i) phosphorylated H2AX (γ-H2AX), markers of DNA double strand breaks (DSBs); ii) p19Kip1/Cip1, p21Waf1/Cip1 and p27Kip1/Cip1, senescence-related-markers; iii) p62, LC3-I and LC3-II, regulators of autophagy; iv) ATM, RAD51, DNA-PKcs, Ku70 and Ku80, mediators of DSBs repair.Results: Low dose-rate (LDR) more efficiently induced apoptosis and senescence in RMS while high dose-rate (HDR) necrosis in PCa. This paralleled with a lower ability of LDR-RMS and HDR-PCa irradiated cells to activate DSBs repair. Modulating the dose rate did not differently affect the anti-oxidant ability of cancer cells.Conclusion: The present results indicate that a stronger cytotoxic effect was induced by modulating the dose-rate in a cancer cell-dependent manner, this suggesting that choose the dose-rate based on the individual patient's tumor characteristics could be strategic for effective RT exposures.


Asunto(s)
Células Epiteliales/patología , Mesodermo/patología , Neoplasias de la Próstata/patología , Tolerancia a Radiación , Rabdomiosarcoma/patología , Apoptosis/efectos de la radiación , Autofagia/efectos de la radiación , Línea Celular Tumoral , Senescencia Celular/efectos de la radiación , Roturas del ADN de Doble Cadena/efectos de la radiación , Reparación del ADN/efectos de la radiación , Relación Dosis-Respuesta en la Radiación , Humanos , Masculino , Especies Reactivas de Oxígeno/metabolismo
15.
Curr Pharm Des ; 25(42): 4510-4522, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31724509

RESUMEN

Exosomes are extracellular vesicles produced by eukaryotic cells that are also found in most biological fluids and tissues. While they were initially thought to act as compartments for removal of cellular debris, they are now recognized as important tools for cell-to-cell communication and for the transfer of pathogens between the cells. They have attracted particular interest in neurodegenerative diseases for their potential role in transferring prion-like proteins between neurons, and in Parkinson's disease (PD), they have been shown to spread oligomers of α-synuclein in the brain accelerating the progression of this pathology. A potential neuroprotective role of exosomes has also been equally proposed in PD as they could limit the toxicity of α-synuclein by clearing them out of the cells. Exosomes have also attracted considerable attention for use as drug vehicles. Being nonimmunogenic in nature, they provide an unprecedented opportunity to enhance the delivery of incorporated drugs to target cells. In this review, we discuss current knowledge about the potential neurotoxic and neuroprotective role of exosomes and their potential application as drug delivery systems in PD.


Asunto(s)
Exosomas/fisiología , Neuroprotección , Neurotoxinas , Enfermedad de Parkinson/fisiopatología , Sistemas de Liberación de Medicamentos , Humanos , alfa-Sinucleína
16.
Cancer Lett ; 461: 90-101, 2019 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-31325529

RESUMEN

This study describes the in vitro and in vivo activity of PXD-101 (Belinostat), a novel hydroxamic acid-type pan-HDACs inhibitor characterized by a larger safety and efficacy, on myogenic-derived PAX3/FOXO1 fusion protein positive (RH30) or negative (RD) expressing rhabdomyosarcoma (RMS) cell lines. PXD-101 at low doses efficiently inhibited HDACs activity and counteracted the transformed phenotype of RMS by inducing growth arrest and apoptosis, affecting cancer stem cells population and inducing differentiation in RD. Notably, PXD-101 induced oxidative stress promoting DNA damages and affected the ability of RMS to assemble mitotic spindle. PXD-101 radiosensitized by inducing G2 cell cycle growth arrest, enhancing the radiation's ability to induce ROS accumulation and compromising both the ability of RMS to detoxify from ROS and to repair DNA damage. PXD-101 transcriptionally and post-transcriptionally affected c-Myc expression, key master regulator of rhabdomyosarcomagenesis and RMS radioresistance. All in vitro data were corroborated by in vivo experiments showing the cytostatic effects of PXD-101 when used alone and at low dose and its ability to promote the RT-induced killing of RMS. Taken together, our data confirm that altered HDACs activity plays a key role in RMS genesis and suggest PXD-101 as a valid therapeutic strategy particularly in combination with RT.


Asunto(s)
Diferenciación Celular/efectos de la radiación , Inhibidores de Histona Desacetilasas/farmacología , Ácidos Hidroxámicos/farmacología , Fármacos Sensibilizantes a Radiaciones/farmacología , Rabdomiosarcoma/patología , Sulfonamidas/farmacología , Animales , Apoptosis , Proliferación Celular , Femenino , Humanos , Técnicas In Vitro , Ratones , Ratones Desnudos , Rabdomiosarcoma/metabolismo , Rabdomiosarcoma/radioterapia , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...