Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
3.
New Phytol ; 234(4): 1394-1410, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35238413

RESUMEN

Solanum steroidal glycoalkaloids (SGAs) are renowned defence metabolites exhibiting spectacular structural diversity. Genes and enzymes generating the SGA precursor pathway, SGA scaffold and glycosylated forms have been largely identified. Yet, the majority of downstream metabolic steps creating the vast repertoire of SGAs remain untapped. Here, we discovered that members of the 2-OXOGLUTARATE-DEPENDENT DIOXYGENASE (2-ODD) family play a prominent role in SGA metabolism, carrying out three distinct backbone-modifying oxidative steps in addition to the three formerly reported pathway reactions. The GLYCOALKALOID METABOLISM34 (GAME34) enzyme catalyses the conversion of core SGAs to habrochaitosides in wild tomato S. habrochaites. Cultivated tomato plants overexpressing GAME34 ectopically accumulate habrochaitosides. These habrochaitoside enriched plants extracts potently inhibit Puccinia spp. spore germination, a significant Solanaceae crops fungal pathogen. Another 2-ODD enzyme, GAME33, acts as a desaturase (via hydroxylation and E/F ring rearrangement) forming unique, yet unreported SGAs. Conversion of bitter α-tomatine to ripe fruit, nonbitter SGAs (e.g. esculeoside A) requires two hydroxylations; while the known GAME31 2-ODD enzyme catalyses hydroxytomatine formation, we find that GAME40 catalyses the penultimate step in the pathway and generates acetoxy-hydroxytomatine towards esculeosides accumulation. Our results highlight the significant contribution of 2-ODD enzymes to the remarkable structural diversity found in plant steroidal specialized metabolism.


Asunto(s)
Alcaloides , Dioxigenasas , Solanum lycopersicum , Solanum tuberosum , Solanum , Alcaloides/metabolismo , Dioxigenasas/genética , Dioxigenasas/metabolismo , Ácidos Cetoglutáricos/metabolismo , Solanum lycopersicum/genética , Solanum/genética , Solanum/metabolismo , Solanum tuberosum/genética
4.
Hortic Res ; 6: 122, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31728197

RESUMEN

The cwp (cuticular water permeability) gene controls the development of cuticular microfissuring and subsequent fruit dehydration in tomato. The gene underwent silencing in the evolution of the fleshy cultivated tomato but is expressed in the primitive wild tomato relatives. The introgression of the expressed allele from the wild S. habrochaites (cwp h ) into the cultivated tomato (Solanum lycopersicum) leads to the phenotype of fruit water loss during and following ripening. In this report, we show that low temperature impacts on the severity of the cuticular microfissure phenotype via a combination of effects on both expression and alternative splicing of cwp h . The cwp gene, comprising four exons and three introns, undergoes post-transcriptional alternative splicing processes, leading to seven alternative transcripts that differ in reading-frame lengths. Transgenic plants expressing each of the alternative transcripts identified the longest reading frame (VAR1) as the functional splice variant. Low temperature led to a strong upregulation of cwp h expression, compounded by an increase in the relative proportion of the functional VAR1 transcript, leading to increased severity of microfissuring of the cuticle. In summary, we demonstrate the molecular mechanism behind the horticultural phenomenon of the low-temperature effect on cuticular microfissures in the dehydrating tomato.

5.
Plant J ; 96(2): 343-357, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30044900

RESUMEN

The sugar content of Solanum lycopersicum (tomato) fruit is a primary determinant of taste and quality. Cultivated tomato fruit are characterized by near-equimolar levels of the hexoses glucose and fructose, derived from the hydrolysis of translocated sucrose. As fructose is perceived as approximately twice as sweet as glucose, increasing its concentration at the expense of glucose can improve tomato fruit taste. Introgressions of the FgrH allele from the wild species Solanum habrochaites (LA1777) into cultivated tomato increased the fructose-to-glucose ratio of the ripe fruit by reducing glucose levels and concomitantly increasing fructose levels. In order to identify the function of the Fgr gene, we combined a fine-mapping strategy with RNAseq differential expression analysis of near-isogenic tomato lines. The results indicated that a SWEET protein was strongly upregulated in the lines with a high fructose-to-glucose ratio. Overexpressing the SWEET protein in transgenic tomato plants dramatically reduced the glucose levels and increased the fructose : glucose ratio in the developing fruit, thereby proving the function of the protein. The SWEET protein was localized to the plasma membrane and expression of the SlFgr gene in a yeast line lacking native hexose transporters complemented growth with glucose, but not with fructose. These results indicate that the SlFgr gene encodes a plasma membrane-localized glucose efflux transporter of the SWEET family, the overexpression of which reduces glucose levels and may allow for increased fructose levels. This article identifies the function of the tomato Fgr gene as a SWEET transporter, the upregulation of which leads to a modified sugar accumulation pattern in the fleshy fruit. The results point to the potential of the inedible wild species to improve fruit sugar accumulation via sugar transport mechanisms.


Asunto(s)
Variación Genética , Proteínas de Transporte de Membrana/metabolismo , Proteínas de Transporte de Monosacáridos/metabolismo , Azúcares/metabolismo , Fructosa/metabolismo , Frutas/genética , Frutas/crecimiento & desarrollo , Glucosa/metabolismo , Hexosas/metabolismo , Solanum lycopersicum/genética , Solanum lycopersicum/crecimiento & desarrollo , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Monosacáridos/genética , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Sacarosa/metabolismo
6.
Proc Natl Acad Sci U S A ; 113(47): E7619-E7628, 2016 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-27821754

RESUMEN

The consumption of sweeteners, natural as well as synthetic sugars, is implicated in an array of modern-day health problems. Therefore, natural nonsugar sweeteners are of increasing interest. We identify here the biosynthetic pathway of the sweet triterpenoid glycoside mogroside V, which has a sweetening strength of 250 times that of sucrose and is derived from mature fruit of luo-han-guo (Siraitia grosvenorii, monk fruit). A whole-genome sequencing of Siraitia, leading to a preliminary draft of the genome, was combined with an extensive transcriptomic analysis of developing fruit. A functional expression survey of nearly 200 candidate genes identified the members of the five enzyme families responsible for the synthesis of mogroside V: squalene epoxidases, triterpenoid synthases, epoxide hydrolases, cytochrome P450s, and UDP-glucosyltransferases. Protein modeling and docking studies corroborated the experimentally proven functional enzyme activities and indicated the order of the metabolic steps in the pathway. A comparison of the genomic organization and expression patterns of these Siraitia genes with the orthologs of other Cucurbitaceae implicates a strikingly coordinated expression of the pathway in the evolution of this species-specific and valuable metabolic pathway. The genomic organization of the pathway genes, syntenously preserved among the Cucurbitaceae, indicates, on the other hand, that gene clustering cannot account for this novel secondary metabolic pathway.


Asunto(s)
Vías Biosintéticas , Cucurbitaceae/crecimiento & desarrollo , Proteínas de Plantas/genética , Triterpenos/metabolismo , Cucurbitaceae/genética , Cucurbitaceae/metabolismo , Sistema Enzimático del Citocromo P-450/química , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Epóxido Hidrolasas/química , Epóxido Hidrolasas/genética , Epóxido Hidrolasas/metabolismo , Perfilación de la Expresión Génica/métodos , Regulación de la Expresión Génica de las Plantas , Glucosiltransferasas/química , Glucosiltransferasas/genética , Glucosiltransferasas/metabolismo , Modelos Moleculares , Simulación del Acoplamiento Molecular , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Análisis de Secuencia de ADN/métodos , Escualeno-Monooxigenasa/química , Escualeno-Monooxigenasa/genética , Escualeno-Monooxigenasa/metabolismo
7.
Nat Commun ; 5: 4026, 2014 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-24898284

RESUMEN

Taste has been the subject of human selection in the evolution of agricultural crops, and acidity is one of the three major components of fleshy fruit taste, together with sugars and volatile flavour compounds. We identify a family of plant-specific genes with a major effect on fruit acidity by map-based cloning of C. melo PH gene (CmPH) from melon, Cucumis melo taking advantage of the novel natural genetic variation for both high and low fruit acidity in this species. Functional silencing of orthologous PH genes in two distantly related plant families, cucumber and tomato, produced low-acid, bland tasting fruit, showing that PH genes control fruit acidity across plant families. A four amino-acid duplication in CmPH distinguishes between primitive acidic varieties and modern dessert melons. This fortuitous mutation served as a preadaptive antecedent to the development of sweet melon cultigens in Central Asia over 1,000 years ago.


Asunto(s)
Cucumis melo/genética , Cucumis sativus/genética , Frutas/química , Proteínas de Plantas/genética , Solanum lycopersicum/genética , Ácido Cítrico/análisis , Cucumis melo/química , Cucumis sativus/química , Frutas/genética , Concentración de Iones de Hidrógeno , Solanum lycopersicum/química , Malatos/análisis
8.
Plant Mol Biol ; 76(1-2): 1-18, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21387125

RESUMEN

The sweet melon fruit is characterized by a metabolic transition during its development that leads to extensive accumulation of the disaccharide sucrose in the mature fruit. While the biochemistry of the sugar metabolism pathway of the cucurbits has been well studied, a comprehensive analysis of the pathway at the transcriptional level allows for a global genomic view of sugar metabolism during fruit sink development. We identified 42 genes encoding the enzymatic reactions of the sugar metabolism pathway in melon. The expression pattern of the 42 genes during fruit development of the sweet melon cv Dulce was determined from a deep sequencing analysis performed by 454 pyrosequencing technology, comprising over 350,000 transcripts from four stages of developing melon fruit flesh, allowing for digital expression of the complete metabolic pathway. The results shed light on the transcriptional control of sugar metabolism in the developing sweet melon fruit, particularly the metabolic transition to sucrose accumulation, and point to a concerted metabolic transition that occurs during fruit development.


Asunto(s)
Cucumis melo/genética , Cucumis melo/metabolismo , Perfilación de la Expresión Génica , Sacarosa/metabolismo , Análisis por Conglomerados , Cucumis melo/crecimiento & desarrollo , Enzimas/clasificación , Enzimas/genética , Enzimas/metabolismo , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Biblioteca de Genes , Redes y Vías Metabólicas/genética , Filogenia , Proteínas de Plantas/clasificación , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Análisis de Secuencia de ADN , Solubilidad , Sacarosa/química
9.
Biochem J ; 428(2): 201-12, 2010 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-20236089

RESUMEN

The enzyme AGPase [ADP-Glc (glucose) pyrophosphorylase] catalyses a rate-limiting step in starch synthesis in tomato (Solanum lycopersicon) fruit, which undergoes a transient period of starch accumulation. It has been a generally accepted paradigm in starch metabolism that the enzyme naturally functions primarily as a heterotetramer comprised of two large subunits (L) and two small subunits (S). The tomato genome harbours a single gene encoding S and three genes for L proteins, which are expressed in both a tissue- and time-specific manner. In the present study the allosteric contributions of the different L subunits were compared by expressing each one in Escherichia coli, in conjunction with S and individually, and characterizing the resulting enzyme activity. Our results indicate different kinetic characteristics of the tomato L1/S and L3/S heterotetramers. Surprisingly, the recombinant L3 protein was also active when expressed alone and size-exclusion and immunoblotting showed that it functioned as a monomer. Subunit interaction modelling pointed to two amino acids potentially affecting subunit interactions. However, directed mutations did not have an impact on subunit tetramerization. These results indicate a hitherto unknown active role for the L subunit in the synthesis of ADP-Glc.


Asunto(s)
Glucosa-1-Fosfato Adenililtransferasa/metabolismo , Proteínas de Plantas/metabolismo , Isoformas de Proteínas/metabolismo , Subunidades de Proteína/metabolismo , Proteínas Recombinantes/metabolismo , Solanum lycopersicum/enzimología , Western Blotting , Escherichia coli/genética , Escherichia coli/metabolismo , Glucosa-1-Fosfato Adenililtransferasa/química , Glucosa-1-Fosfato Adenililtransferasa/genética , Cinética , Solanum lycopersicum/genética , Mutagénesis Sitio-Dirigida , Proteínas de Plantas/química , Proteínas de Plantas/genética , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Subunidades de Proteína/química , Subunidades de Proteína/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Espectrometría de Masas en Tándem
10.
Plant Physiol ; 142(1): 294-304, 2006 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-16829585

RESUMEN

The Cucurbitaceae translocate a significant portion of their photosynthate as raffinose and stachyose, which are galactosyl derivatives of sucrose. These are initially hydrolyzed by alpha-galactosidase to yield free galactose (Gal) and, accordingly, Gal metabolism is an important pathway in Cucurbitaceae sink tissue. We report here on a novel plant-specific enzyme responsible for the nucleotide activation of phosphorylated Gal and the subsequent entry of Gal into sink metabolism. The enzyme was antibody purified, sequenced, and the gene cloned and functionally expressed in Escherichia coli. The heterologous protein showed the characteristics of a dual substrate UDP-hexose pyrophosphorylase (PPase) with activity toward both Gal-1-P and glucose (Glc)-1-P in the uridinylation direction and their respective UDP-sugars in the reverse direction. The two other enzymes involved in Glc-P and Gal-P uridinylation are UDP-Glc PPase and uridyltransferase, and these were also cloned, heterologously expressed, and characterized. The gene expression and enzyme activities of all three enzymes in melon (Cucumis melo) fruit were measured. The UDP-Glc PPase was expressed in melon fruit to a similar extent as the novel enzyme, but the expressed protein was specific for Glc-1-P in the UDP-Glc synthesis direction and did not catalyze the nucleotide activation of Gal-1-P. The uridyltransferase gene was only weakly expressed in melon fruit, and activity was not observed in crude extracts. The results indicate that this novel enzyme carries out both the synthesis of UDP-Gal from Gal-1-P as well as the subsequent synthesis of Glc-1-P from the epimerase product, UDP-Glc, and thus plays a key role in melon fruit sink metabolism.


Asunto(s)
Cucumis melo/enzimología , Frutas/enzimología , Galactosa/metabolismo , Nucleotidiltransferasas/metabolismo , Rafinosa/metabolismo , Secuencia de Aminoácidos , Clonación Molecular , Cucumis melo/química , Cucumis melo/genética , Frutas/química , Galactosafosfatos/metabolismo , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Glucofosfatos/metabolismo , Datos de Secuencia Molecular , Nucleotidiltransferasas/genética , Nucleotidiltransferasas/aislamiento & purificación , Análisis de Secuencia de ADN , Análisis de Secuencia de Proteína , Homología de Secuencia de Aminoácido , UDP-Glucosa-Hexosa-1-Fosfato Uridiltransferasa/genética , UDP-Glucosa-Hexosa-1-Fosfato Uridiltransferasa/metabolismo
11.
Planta ; 224(6): 1465-79, 2006 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-16770584

RESUMEN

Tomato plants (Solanum lycopersicum) harboring the allele for the AGPase large subunit (AgpL1) derived from the wild species Solanum habrochaites (AgpL1 ( H )) are characterized by higher AGPase activity and increased starch content in the immature fruit, as well as higher soluble solids in the mature fruit following the breakdown of the transient starch, as compared to fruits from plants harboring the cultivated tomato allele (AgpL1 ( E )). Comparisons of AGPase subunit gene expression and protein levels during fruit development indicate that the increase in AGPase activity correlates with a prolonged expression of the AgpL1 gene in the AgpL1 ( H ) high starch line, leading to an extended presence of the L1 protein. The S1 (small subunit) protein also remained for an extended period of fruit development in the AgpL1 ( H ) fruit, linked to the presence of the L1 protein. There were no discernible differences between the kinetic characteristics of the partially purified AGPase-L1(E) and AGPase-L1(H) enzymes. The results indicate that the increased activity of AGPase in the AgpL1 ( H ) tomatoes is due to the extended expression of the regulatory L1 and to the subsequent stability of the heterotetramer in the presence of the L1 protein, implying a role for the large subunit not only in the allosteric control of AGPase activity but also in the stability of the AGPase L1-S1 heterotetramer. The introgression line of S. lycopersicum containing the wild species AgpL1 ( H ) allele is a novel example of transgressive heterosis in which the hybrid multimeric enzyme shows higher activity due to a modulated temporal expression of one of the subunits.


Asunto(s)
Regulación Enzimológica de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Glucosa-1-Fosfato Adenililtransferasa/genética , Solanum lycopersicum/genética , Alelos , Secuencia de Bases , Western Blotting , Cartilla de ADN , Electroforesis en Gel de Poliacrilamida , Genes de Plantas , Glucosa-1-Fosfato Adenililtransferasa/metabolismo , Cinética , Solanum lycopersicum/enzimología , Solanum lycopersicum/crecimiento & desarrollo , Reacción en Cadena de la Polimerasa
12.
Plant J ; 33(1): 97-106, 2003 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-12943544

RESUMEN

Raffinose and stachyose are ubiquitous galactosyl-sucrose oligosaccharides in the plant kingdom which play major roles, second only to sucrose, in photoassimilate translocation and seed carbohydrate storage. These sugars are initially metabolised by alpha-galactosidases (alpha-gal). We report the cloning and functional expression of the first genes, CmAGA1 and CmAGA2, encoding for plant alpha-gals with alkaline pH optima from melon fruit (Cucumis melo L.), a raffinose and stachyose translocating species. The alkaline alpha-gal genes show very high sequence homology with a family of undefined 'seed imbibition proteins' (SIPs) which are present in a wide range of plant families. In order to confirm the function of SIP proteins, a representative SIP gene, from tomato, was expressed and shown to have alkaline alpha-gal activity. Phylogenetic analysis based on amino acid sequences shows that the family of alkaline alpha-gals shares little homology with the known prokaryotic and eukaryotic alpha-gals of glycosyl hydrolase families 27 and 36, with the exception of two cross-family conserved sequences containing aspartates which probably function in the catalytic step. This previously uncharacterised, plant-specific alpha-gal family of glycosyl hydrolases, with optimal activity at neutral-alkaline pH likely functions in key processes of galactosyl-oligosaccharide metabolism, such as during seed germination and translocation of RFO photosynthate.


Asunto(s)
Cucumis/genética , alfa-Galactosidasa/genética , Secuencia de Aminoácidos , Clonación Molecular , Cucumis/clasificación , Cucumis/enzimología , Regulación Enzimológica de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Concentración de Iones de Hidrógeno , Cinética , Solanum lycopersicum/enzimología , Solanum lycopersicum/genética , Datos de Secuencia Molecular , Familia de Multigenes , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido , alfa-Galactosidasa/química , alfa-Galactosidasa/metabolismo
13.
Plant J ; 34(6): 837-46, 2003 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-12795703

RESUMEN

Fructokinases catalyze the key step of fructose phosphorylation in plants. LeFRK2, the major fructokinase-encoding gene in tomato plants, is abundantly expressed in roots, stems, and fruits. To analyze the role of LeFRK2 in plant development, we analyzed transgenic tomato plants with sense and antisense expression of StFRK, the potato homolog of LeFRK2. Increased fructokinase activity had no effect. However, plants in which LeFRK2 was specifically suppressed, either via antisense suppression or via co-suppression, exhibited growth inhibition and wilting of young leaves at daytime. Grafting experiments indicated that a stem interstock of antisense plants was sufficient to inhibit growth and cause leaf wilting. Stem secondary xylem exhibited particular suppression of LeFRK2 and the area of active xylem, estimated by eosin uptake, was significantly smaller in antisense stem compared to that of wild-type plants. These results suggest that LeFRK2 might be required for proper development of xylem that affected growth and wilting.


Asunto(s)
Fructoquinasas/genética , Fructoquinasas/metabolismo , Hojas de la Planta/crecimiento & desarrollo , Tallos de la Planta/enzimología , Solanum lycopersicum/enzimología , Solanum lycopersicum/crecimiento & desarrollo , Elementos sin Sentido (Genética) , Regulación del Desarrollo de la Expresión Génica , Regulación Enzimológica de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Solanum lycopersicum/genética , Solanum lycopersicum/fisiología , Hojas de la Planta/genética , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Tallos de la Planta/genética , Plantas Modificadas Genéticamente
14.
Physiol Plant ; 115(1): 35-47, 2002 May.
Artículo en Inglés | MEDLINE | ID: mdl-12010465

RESUMEN

By using immunolocalization and differential extraction methods we show that only apoplastic invertase, but not vacuolar invertase, was present in the mature, sucrose-accumulating L. hirsutum pericarp. In contrast, in the hexose-accumulating L. esculentum fruit, both the apoplastic and vacuolar invertase activities and protein content increase in the mature fruit. Quantitative expression studies of the soluble invertase gene (TIV1) and the apoplastic invertase genes (LINs) showed that only TIV1 gene expression could account for the species and developmental differences of both soluble and insoluble enzyme activity of the pericarp. The expression of the LIN genes encoding for apoplastic tomato invertases was unrelated to the differences in bound enzyme activity and could not account for the rise in bound invertase activity in the mature L. esculentum fruit. Evidence is presented that the bound invertase activity of tomato fruit is also the TIV1 gene product. The presence of apoplastic invertase in the mature sucrose-accumulating L. hirsutum fruit suggests a hydrolysis-resynthesis mechanism of sucrose uptake. In order to test this hypothesis, we studied short- and long-term uptakes of asymmetrically labelled 3H-fructosyl-sucrose accompanied by compartmental analysis of the sugars in attached whole fruits of L. hirsutum and L. esculentum. The results indicate that hydrolysis-resynthesis is slow in the sucrose-accumulating fruit but is not an integral part of an uptake and compartmentation mechanism.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...