Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Dev Cell ; 39(5): 585-596, 2016 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-27923776

RESUMEN

Tissue-specific gene expression is often thought to arise from spatially restricted transcriptional cascades. However, it is unclear how expression is established at the top of these cascades in the absence of pre-existing specificity. We generated a transcriptional network to explore how transcription factor expression is established in the Arabidopsis thaliana root ground tissue. Regulators of the SHORTROOT-SCARECROW transcriptional cascade were validated in planta. At the top of this cascade, we identified both activators and repressors of SHORTROOT. The aggregate spatial expression of these regulators is not sufficient to predict transcriptional specificity. Instead, modeling, transcriptional reporters, and synthetic promoters support a mechanism whereby expression at the top of the SHORTROOT-SCARECROW cascade is established through opposing activities of activators and repressors.


Asunto(s)
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Redes Reguladoras de Genes , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Arabidopsis/crecimiento & desarrollo , Simulación por Computador , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Genes Reporteros , Genes Sintéticos , Modelos Genéticos , Raíces de Plantas/citología , Raíces de Plantas/metabolismo , Plantas Modificadas Genéticamente , Regiones Promotoras Genéticas , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Transactivadores/genética , Transactivadores/metabolismo , Técnicas del Sistema de Dos Híbridos
2.
Science ; 350(6259): 426-30, 2015 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-26494755

RESUMEN

Tissue patterns are dynamically maintained. Continuous formation of plant tissues during postembryonic growth requires asymmetric divisions and the specification of cell lineages. We show that the BIRDs and SCARECROW regulate lineage identity, positional signals, patterning, and formative divisions throughout Arabidopsis root growth. These transcription factors are postembryonic determinants of the ground tissue stem cells and their lineage. Upon further activation by the positional signal SHORT-ROOT (a mobile transcription factor), they direct asymmetric cell divisions and patterning of cell types. The BIRDs and SCARECROW with SHORT-ROOT organize tissue patterns at all formative steps during growth, ensuring developmental plasticity.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/genética , Factores de Transcripción/metabolismo , Arabidopsis/citología , División Celular/genética , Linaje de la Célula/genética , Raíces de Plantas/citología , Transcripción Genética
3.
Proc Natl Acad Sci U S A ; 112(39): 12099-104, 2015 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-26371322

RESUMEN

Stem cells are defined by their ability to self-renew and produce daughter cells that proliferate and mature. These maturing cells transition from a proliferative state to a terminal state through the process of differentiation. In the Arabidopsis thaliana root the transcription factors SCARECROW and SHORTROOT regulate specification of the bipotent stem cell that gives rise to cortical and endodermal progenitors. Subsequent progenitor proliferation and differentiation generate mature endodermis, marked by the Casparian strip, a cell-wall modification that prevents ion diffusion into and out of the vasculature. We identified a transcription factor, MYB DOMAIN PROTEIN 36 (MYB36), that regulates the transition from proliferation to differentiation in the endodermis. We show that SCARECROW directly activates MYB36 expression, and that MYB36 likely acts in a feed-forward loop to regulate essential Casparian strip formation genes. We show that myb36 mutants have delayed and defective barrier formation as well as extra divisions in the meristem. Our results demonstrate that MYB36 is a critical positive regulator of differentiation and negative regulator of cell proliferation.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Diferenciación Celular/fisiología , Proliferación Celular/fisiología , Regulación de la Expresión Génica de las Plantas/fisiología , Raíces de Plantas/fisiología , Factores de Transcripción/metabolismo , Cartilla de ADN/genética , Mutagénesis , Reacción en Cadena en Tiempo Real de la Polimerasa , Análisis de Secuencia de ARN
4.
Annu Rev Plant Biol ; 63: 563-90, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22404466

RESUMEN

The Arabidopsis root has been the subject of intense research over the past decades. This research has led to significantly improved understanding of the molecular mechanisms underlying root development. Key insights into the specification of individual cell types, cell patterning, growth and differentiation, branching of the primary root, and responses of the root to the environment have been achieved. Transcription factors and plant hormones play key regulatory roles. Recently, mechanisms involving protein movement and the oscillation of gene expression have also been uncovered. Root gene regulatory networks controlling root development have been reconstructed from genome-wide profiling experiments, revealing novel molecular connections and models. Future refinement of these models will lead to a more complete description of the complex molecular interactions that give rise to a simple growing root.


Asunto(s)
Arabidopsis/crecimiento & desarrollo , Raíces de Plantas/crecimiento & desarrollo , Arabidopsis/genética , Arabidopsis/fisiología , Diferenciación Celular/genética , Regulación de la Expresión Génica de las Plantas , Redes Reguladoras de Genes , Genes de Plantas/genética , Meristema/citología , Meristema/crecimiento & desarrollo , Meristema/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Raíces de Plantas/citología , Raíces de Plantas/embriología , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
5.
Proc Natl Acad Sci U S A ; 109(18): 6811-8, 2012 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-22447775

RESUMEN

Because proteins are the major functional components of cells, knowledge of their cellular localization is crucial to gaining an understanding of the biology of multicellular organisms. We have generated a protein expression map of the Arabidopsis root providing the identity and cell type-specific localization of nearly 2,000 proteins. Grouping proteins into functional categories revealed unique cellular functions and identified cell type-specific biomarkers. Cellular colocalization provided support for numerous protein-protein interactions. With a binary comparison, we found that RNA and protein expression profiles are weakly correlated. We then performed peak integration at cell type-specific resolution and found an improved correlation with transcriptome data using continuous values. We performed GeLC-MS/MS (in-gel tryptic digestion followed by liquid chromatography-tandem mass spectrometry) proteomic experiments on mutants with ectopic and no root hairs, providing complementary proteomic data. Finally, among our root hair-specific proteins we identified two unique regulators of root hair development.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Arabidopsis/anatomía & histología , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Secuencia de Bases , Cromatografía Liquida , Cartilla de ADN/genética , Perfilación de la Expresión Génica , Raíces de Plantas/anatomía & histología , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Plantas Modificadas Genéticamente , Análisis por Matrices de Proteínas , Mapeo de Interacción de Proteínas , Proteoma/genética , Proteoma/metabolismo , Proteómica , ARN de Planta/genética , ARN de Planta/metabolismo , Espectrometría de Masas en Tándem
6.
Genome Res ; 22(1): 163-76, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21940835

RESUMEN

Small non-coding RNAs (ncRNAs) are key regulators of plant development through modulation of the processing, stability, and translation of larger RNAs. We present small RNA data sets comprising more than 200 million aligned Illumina sequence reads covering all major cell types of the root as well as four distinct developmental zones. MicroRNAs (miRNAs) constitute a class of small ncRNAs that are particularly important for development. Of the 243 known miRNAs, 133 were found to be expressed in the root, and most showed tissue- or zone-specific expression patterns. We identified 66 new high-confidence miRNAs using a computational pipeline, PIPmiR, specifically developed for the identification of plant miRNAs. PIPmiR uses a probabilistic model that combines RNA structure and expression information to identify miRNAs with high precision. Knockdown of three of the newly identified miRNAs results in altered root growth phenotypes, confirming that novel miRNAs predicted by PIPmiR have functional relevance.


Asunto(s)
Arabidopsis/fisiología , Perfilación de la Expresión Génica/métodos , Regulación de la Expresión Génica de las Plantas/fisiología , MicroARNs/biosíntesis , Modelos Biológicos , ARN de Planta/biosíntesis , MicroARNs/genética , Especificidad de Órganos/fisiología , ARN de Planta/genética
7.
Dev Cell ; 21(4): 770-82, 2011 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-22014526

RESUMEN

Stress responses in plants are tightly coordinated with developmental processes, but interaction of these pathways is poorly understood. We used genome-wide assays at high spatiotemporal resolution to understand the processes that link development and stress in the Arabidopsis root. Our meta-analysis finds little evidence for a universal stress response. However, common stress responses appear to exist with many showing cell type specificity. Common stress responses may be mediated by cell identity regulators because mutations in these genes resulted in altered responses to stress. Evidence for a direct role for cell identity regulators came from genome-wide binding profiling of the key regulator SCARECROW, which showed binding to regulatory regions of stress-responsive genes. Coexpression in response to stress was used to identify genes involved in specific developmental processes. These results reveal surprising linkages between stress and development at cellular resolution, and show the power of multiple genome-wide data sets to elucidate biological processes.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Linaje de la Célula , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/genética , Estrés Fisiológico/genética , Ácido Abscísico/farmacología , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Biomarcadores/metabolismo , Inmunoprecipitación de Cromatina , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Genes de Plantas , Genoma de Planta , Análisis de Secuencia por Matrices de Oligonucleótidos , Reguladores del Crecimiento de las Plantas/farmacología , Raíces de Plantas/metabolismo , ARN Mensajero/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal , Transcripción Genética
8.
Trends Cell Biol ; 21(8): 442-51, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21632251

RESUMEN

Cellular responses often involve a transition of cells from one state to another. A transition from a stem cell to a differentiated cell state, for example, might occur in response to gene expression changes induced by a transcription factor, or to signaling cascades triggered by a hormone or pathogen. Regulatory networks are thought to control such cellular transitions. Thus, many researchers are interested in reconstructing regulatory networks, not only with the aim of gaining a deeper understanding of cellular transitions, but also of using networks to predict and potentially manipulate cellular transitions and outcomes. In this review, we highlight approaches to the reconstruction of regulatory networks underlying cellular transitions, with special attention to transcriptional regulatory networks. We describe recent regulatory network reconstructions in a variety of organisms, and discuss the success they share in identifying new regulatory components, shared relationships and phenotypic outcomes.


Asunto(s)
Regulación de la Expresión Génica/fisiología , Redes Reguladoras de Genes , Genes Reguladores/fisiología , Animales , Genes Reguladores/genética , Humanos , Transducción de Señal , Células Madre/citología , Células Madre/metabolismo , Transcripción Genética
9.
Cold Spring Harb Perspect Biol ; 1(5): a000497, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20066115

RESUMEN

Asymmetric cell division generates cell types with different specialized functions or fates. This type of division is critical to the overall cellular organization and development of many multicellular organisms. In plants, regulated asymmetric cell divisions are of particular importance because cell migration does not occur. The influence of extrinsic cues on asymmetric cell division in plants is well documented. Recently, candidate intrinsic factors have been identified and links between intrinsic and extrinsic components are beginning to be elucidated. A novel mechanism in breaking symmetry was revealed that involves the movement of typically intrinsic factors between plant cells. As we learn more about the regulation of asymmetric cell divisions in plants, we can begin to reflect on the similarities and differences between the strategies used by plants and animals. Focusing on the underlying molecular mechanisms, this article describes three selected cases of symmetry-breaking events in the model plant Arabidopsis thaliana. These examples occur in early embryogenesis, stomatal development, and ground tissue formation in the root.


Asunto(s)
Arabidopsis/fisiología , Proteínas de Plantas/metabolismo , Arabidopsis/embriología , Arabidopsis/metabolismo , División Celular , Proteínas de Homeodominio/metabolismo , Ácidos Indolacéticos/metabolismo , Modelos Biológicos , Fenómenos Fisiológicos de las Plantas , Raíces de Plantas/metabolismo , Estomas de Plantas , Transducción de Señal
10.
Curr Opin Genet Dev ; 18(4): 354-61, 2008 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-18617392

RESUMEN

Developmental patterning events involve cell fate specification and maintenance processes in diverse, multicellular organisms. The simple arrangement of tissue layers in the Arabidopsis thaliana root provides a highly tractable system for the study of these processes. This review highlights recent work addressing the patterning of root tissues focusing on the factors involved and their complex regulation. In the past two years studies of root patterning have indicated that chromatin remodeling, protein movement, transcriptional networks, and an auxin gradient, all contribute to the complexity inherent in developmental patterning events within the root. As a result, future research advances in this field will require tissue-specific information at both the single gene and global level.


Asunto(s)
Tipificación del Cuerpo/genética , Regulación de la Expresión Génica de las Plantas , Raíces de Plantas/crecimiento & desarrollo , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Modelos Biológicos , Epidermis de la Planta/genética , Epidermis de la Planta/crecimiento & desarrollo , Raíces de Plantas/genética , Nicho de Células Madre/embriología , Nicho de Células Madre/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...